back to list

11 perfect fifths

🔗Mario Pizarro <piagui@...>

8/9/2010 1:26:20 PM

To the tuning list,

The 12 tones of a new scale produce eleven perfect fifths and work in the geometric progression of musical cells with exactness. The frequency tones are found within its 624 consonant frequencies comprised between C = 1 and (9/8)^6.

The tone frequencies and their position in the progression follows:

......................... Major Thirds

C = 1 (Cell # 0)...................1.2542

C# = 1.05349794236, (Cell # 46), 90.225 cents.....1.265625

D = 1.11488414335, (Cell # 96), 188.272 cents.....1.2599

Eb = 1.185185185, (Cell # 150), 294.135 cents....1.265625

E = 1.25424466127, (Cell # 200), 392.182 cents.....1.2599

F = 1.33333333333, (Cell # 254), 498.045 cents.....1.2542

F# = 1.40466392312, (Cell # 300), 588.27 cents.....1.265625

G = 1.5, (Cell # 358), 701.955 cents.........1.2542

Ab = 1.58024691358, (Cell # 404), 792.18 cents.....1.265625

A = 1.67232621503, (Cell # 454), 890.227 cents.....1.2599

Bb = 1.77777777777, (Cell # 508), 996 cents.....1.2542

B = 1.88136699191, (Cell # 558), 1094.137 cents...1.2599

2C =2

Since I do not have experience on evaluations, I would appreciate it if you could inform me about the negative and positive properties of this scale. I´ll try to detect other similar scales in the progression.

Thanks

Mario Pizarro

Lima, August 09

piagui@...

__________ Información de ESET NOD32 Antivirus, versión de la base de firmas de virus 5353 (20100809) __________

ESET NOD32 Antivirus ha comprobado este mensaje.

http://www.eset.com