back to list

Re: [tuning] Bir teli 12 eşit parçaya böldüğümüzde çıkan sonuç

🔗Ozan Yarman <ozanyarman@ozanyarman.com>

12/22/2005 12:52:36 PM

Oh yes, sorry about this. I meant to send it to our notayaz group, but
confused the destination.

I arrived at that scale by the arithmetic division of a string from the base
frequency (600 hz) up to the octave (1200 Hz) into twelve equal parts (25 Hz
increments).

Here is another dividing the octave of the string into 72 equal parts, from
360 Hz to 720 Hz by 5 Hz increments:

0: 1/1 0.000 unison, perfect prime
1: 73/72 23.879
2: 37/36 47.434
3: 25/24 70.672 classic chromatic semitone, minor
chroma
4: 19/18 93.603 undevicesimal semitone
5: 77/72 116.234
6: 13/12 138.573 tridecimal 2/3-tone
7: 79/72 160.627
8: 10/9 182.404 minor whole tone
9: 9/8 203.910 major whole tone
10: 41/36 225.152
11: 83/72 246.137
12: 7/6 266.871 septimal minor third
13: 85/72 287.359
14: 43/36 307.608
15: 29/24 327.622
16: 11/9 347.408 undecimal neutral third
17: 89/72 366.970
18: 5/4 386.314 major third
19: 91/72 405.444
20: 23/18 424.364 vicesimotertial major third
21: 31/24 443.081
22: 47/36 461.597
23: 95/72 479.917
24: 4/3 498.045 perfect fourth
25: 97/72 515.985
26: 49/36 533.742 Arabic lute acute fourth
27: 11/8 551.318 undecimal semi-augmented fourth
28: 25/18 568.717 classic augmented fourth
29: 101/72 585.944
30: 17/12 603.000 2nd septendecimal tritone
31: 103/72 619.891
32: 13/9 636.618 tridecimal diminished fifth
33: 35/24 653.185 septimal semi-diminished fifth
34: 53/36 669.595
35: 107/72 685.850
36: 3/2 701.955 perfect fifth
37: 109/72 717.911
38: 55/36 733.722 undecimal semi-augmented fifth
39: 37/24 749.389
40: 14/9 764.916 septimal minor sixth
41: 113/72 780.305
42: 19/12 795.558 undevicesimal minor sixth
43: 115/72 810.678
44: 29/18 825.667
45: 13/8 840.528 tridecimal neutral sixth
46: 59/36 855.262
47: 119/72 869.871
48: 5/3 884.359 major sixth, BP sixth
49: 121/72 898.726
50: 61/36 912.975
51: 41/24 927.107
52: 31/18 941.126
53: 125/72 955.031 classic augmented sixth
54: 7/4 968.826 harmonic seventh
55: 127/72 982.512
56: 16/9 996.090 Pythagorean minor seventh
57: 43/24 1009.563
58: 65/36 1022.931
59: 131/72 1036.198
60: 11/6 1049.363 21/4-tone, undecimal neutral seventh
61: 133/72 1062.429
62: 67/36 1075.397
63: 15/8 1088.269 classic major seventh
64: 17/9 1101.045 septendecimal major seventh
65: 137/72 1113.728
66: 23/12 1126.319 vicesimotertial major seventh
67: 139/72 1138.819
68: 35/18 1151.230 septimal semi-diminished octave
69: 47/24 1163.552
70: 71/36 1175.787
71: 143/72 1187.936
72: 2/1 1200.000 octave

----- Original Message -----
From: "Keenan Pepper" <keenanpepper@gmail.com>
To: <tuning@yahoogroups.com>
Sent: 22 Aral�k 2005 Per�embe 21:18
Subject: Re: [tuning] Bir teli 12 e�it par�aya b�ld���m�zde ��kan sonu�

> Ozan Yarman wrote:
> > 0: 1/1 0.000 unison, perfect prime
> > 1: 13/12 138.573 tridecimal 2/3-tone
> > 2: 7/6 266.871 septimal minor third
> > 3: 5/4 386.314 major third
> > 4: 4/3 498.045 perfect fourth
> > 5: 17/12 603.000 2nd septendecimal tritone
> > 6: 3/2 701.955 perfect fifth
> > 7: 19/12 795.558 undevicesimal minor sixth
> > 8: 5/3 884.359 major sixth, BP sixth
> > 9: 7/4 968.826 harmonic seventh
> > 10: 11/6 1049.363 21/4-tone, undecimal neutral
seventh
> > 11: 23/12 1126.319 vicesimotertial major seventh
> > 12: 2/1 1200.000 octave
> >
> > 0, 1, 2, 3 ve 6 Saba pentakordu oluyor.
>
> The scale is the harmonic series from 12 to 24. Is the language Turkish?
>
> Keenan
>
>