back to list

intervals implied by Harmonic Entropy

🔗Joseph L Monzo <monz@xxxx.xxxx>

3/6/1999 5:48:09 AM

(view this post in a proportional font)

I've drawn a lattice (my design*) of
the ratios implied by Paul Erlich's
Harmonic Entropy formula [N=80]
(x is a place-holder in the diagram
where no ratio is implied by Entropy):

9/7_
/ ''----..__
/ '---.._ x
/ 11/6 / ''--_
x -...__ | / 9/5
/ ''--\_ / /
10/7-...__/ | '---- 3/2 /
'--_ / ''---..__ | / '--_ /
x -...__ 5/4 | / 6/5
''--/_ '|-_ / /
/ '--\- 1/1-...___/
/ | / '--_ /''---..___
5/3 | / 8/5-...__ 7/4
'--_ |/ '-._/ '--_
4/3-...___ / ''--- 7/5
''---..___ /
7/6

I find it most interesting that the most
consonant intervals according to this formula
are all harmonics of the subharmonic series
of 1/1 (including a complete 11-limit hexad
on 4/3). In Partch's terminology:

Ratio Otonality Identity

1/1 1/1 1
3/2 1/1 3
5/4 1/1 5
7/4 1/1 7

4/3 4/3 1
1/1 4/3 3
5/3 4/3 5
7/6 4/3 7
3/2 4/3 9
11/6 4/3 11

8/5 8/5 1
6/5 8/5 3
1/1 8/5 5
7/5 8/5 7
9/5 8/5 9

10/7 8/7 5
1/1 8/7 7
9/7 8/7 9

These ratios also form identities in the
complete 3/2-Utonality triad and the complete
5/4- and 7/4-Utonality tetrads. All these
relationships (and more) can be easily seen
on the lattice, and are summarized in the
Partch Tonality Diamond below:

/ ' .
/ 7/7 / ' .
/ ' . / 7/6 / ' .
/ / ' . / / ' .
/ ' . / 3/3 / ' . / 7/5 / ' .
/ / ' . / / ' . / / ' .
/ ' . / 11/6 / ' . / 6/5 / ' . / 7/4 /
/ 10/7 / ' . / 11/11/ ' . / 4/3 / ' . /
/ ' . / 5/3 / ' . / / ' . / 3/2 /
/ 9/7 / ' . / / ' . / / ' . /
/ ' . / 3/2 / ' . / 5/5 / ' . / /
/ / ' . / / ' . / / ' . /
' . / 4/3 / ' . / 9/5 / ' . / 5/4 /
' . / / ' . / 9/9 / ' . /
' . / 8/5 / ' . / /
' . / / ' . /
' . / 1/1 /
' . /

Erlich performed this calculation only on
individual intervals, and not on chords of
3 or more tones. I wonder if there is any
special significance in what I have portrayed
here . . . ?

---------------------
* By "my design" I mean that this is not
a "triangular" lattice like those usually
drawn here, i.e., it does not connect
intervals related by a 6/5. Erlich refers
to this type as "rectangular", but that's not
an exact description of mine, because the
vectors of different primes have different
lengths and angles.

- Monzo
___________________________________________________________________
You don't need to buy Internet access to use free Internet e-mail.
Get completely free e-mail from Juno at http://www.juno.com/getjuno.html
or call Juno at (800) 654-JUNO [654-5866]