back to list

RE: [tuning] harmonic entropy stuff, van Eck's model

🔗Paul H. Erlich <PERLICH@ACADIAN-ASSET.COM>

9/6/2000 8:01:55 PM

Carl wrote,

>Paul, could you post values for, say, the top 20 ratios, with s=1.0? I'm
>having trouble getting good numbers off the charts.

top 20 ratios?

0¢ 2.21219827357220
100¢ 4.55774224388631
200¢ 4.40292309357911
300¢ 4.30300570955552
400¢ 4.19769688549818
500¢ 3.92040439331227
600¢ 4.15955229761258
700¢ 3.45081745728696
800¢ 4.04748621143389
900¢ 3.88246252562372
1000¢ 3.96781177709110
1100¢ 3.97894872968833
1200¢ 2.00620022996179

>Also, could somebody check my work? I've written a program that spits
>out the "widest" ratios less than an 8ve from a Farey series of a given
>order. Here's the top 20 of order 100. Shouldn't be too far off,
>since it's ordered by denominator. (Note: this isn't harmonic entropy,
>this is just van Eck's model.)

>0.02856915219677081 (2 1)
>0.01414622188897297 (3 2)
>0.00943001718010761 (4 3)
>0.00938378761226610 (5 3)
>0.00703880692699749 (5 4)
>0.00687217101688342 (7 4)
>0.00568569821800397 (7 5)
>0.00565828749191405 (6 5)
>0.00557915549283261 (9 5)
>0.00555376330850399 (8 5)
>0.00460731642550794 (11 6)
>0.00458047281019133 (7 6)
>0.00404149818474608 (12 7)
>0.00398271703938879 (9 7)
>0.00396481195162146 (13 7)
>0.00396386924443387 (8 7)
>0.00394661620776649 (11 7)
>0.00392722983563987 (10 7)
>0.00345207718096036 (11 8)
>0.00343615857784640 (15 8)

right (although what I call s=1% becomes, in your units, s=1%/log(2)=1.4427.