back to list

Recognizing the consonances

🔗Mario Pizarro <piagui@...>

1/8/2012 12:34:55 PM

Dear members,

The reference of 0.0005 determines how sensible is the selection of acceptable consonances. Should this value is reduced to 0.0002, the acceptable consonant ratios diminish. The numbered elements are cells of the progression.

M 139 1.17055326935 CELL
M 140 1.171875
J 141 1.17320082553
J 142 1.17452815104
M 143 1.17585436996
M 144 1.17718208638

47/40 = 1.175 - 1.174528151= 0,000471 < 0.00 05 Then 1.175 is almost consonant.
<<<<<<

M 493 1.74791410141
M 494 1.74988775930
J 495 1.75186753174
J 496 1.75384954404
M 497 1.75582990393
M 498 1.7578125

7/4 = 1.75 - 1.74988775930 = 0.0001123 < 0.0005 Then 7/4 is almost consonant.
<<<<<<

M 221 1.28434083527
M 222 1.28579104922
J 223 1.28724575606
J 224 1.28870210871
M 225 1.29015724720
M 226 1.29161402876

9/7 = 1.2857142857- 1.2857910492 = 0.00007676352 < 0.0005
Then 9/7 is almost consonant.
<<<<<<

M 389 1.55370142347
M 390 1.55545578604
J 391 1.55721558376
J 392 1.55897737247
M 393 1.56073769238
M 394 1.5625

14/9 = 1.555555555 - 1.55545578604= 0.00009976951<<0.0005 Then 14/9 is practically consonant.

Mario
January, 8

🔗Mike Battaglia <battaglia01@...>

1/8/2012 12:37:08 PM

Mario, what intervals in 12-EDO are consonant under your scheme?

-Mike

On Sun, Jan 8, 2012 at 3:34 PM, Mario Pizarro <piagui@...> wrote:
>
> Dear members,
>
> The reference of 0.0005 determines how sensible is the selection of acceptable consonances. Should this value is reduced to 0.0002, the acceptable consonant ratios diminish. The numbered elements are cells of the progression.
>
>   M 139 1.17055326935 CELL
>   M 140 1.171875
>   J 141 1.17320082553
>   J 142 1.17452815104
>   M 143 1.17585436996
>   M 144 1.17718208638
> 47/40 = 1.175 - 1.174528151= 0,000471 < 0.00 05           Then 1.175 is almost consonant.
> <<<<<<
>   M 493 1.74791410141
>   M 494 1.74988775930
>   J 495 1.75186753174
>   J 496 1.75384954404
>   M 497 1.75582990393
>   M 498 1.7578125
>   7/4 =  1.75 -  1.74988775930 =  0.0001123  <
>   0.0005
>   Then 7/4 is almost consonant.
> <<<<<<
>   M 221 1.28434083527
>   M 222 1.28579104922
>   J 223 1.28724575606
>   J 224 1.28870210871
>   M 225 1.29015724720
>   M 226 1.29161402876
>    9/7    =  1.2857142857- 1.2857910492 = 0.00007676352 <  0.0005
>
>   Then 9/7 is almost consonant.
> <<<<<<
>   M 389 1.55370142347
>   M 390 1.55545578604
>   J 391 1.55721558376
>   J 392 1.55897737247
>   M 393 1.56073769238
>   M 394 1.5625
>    14/9 = 1.555555555 - 1.55545578604=  0.00009976951<<0.0005
>  Then 14/9 is practically consonant.
>
>
> Mario
> January, 8

🔗Mario Pizarro <piagui@...>

1/18/2012 12:17:17 PM

Mike,

Sorry, this is a delayed response.

I was checking internet data about consonance and concluded that my scheme is not a trusty scheme.

Since all intervals in 12-EDO are exponentials I think none of these intervals is consonant.

If I am wrong, please tell me why.

Mario

January 18
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
----- Original Message ----- From: "Mike Battaglia" <battaglia01@...>
To: <tuning@yahoogroups.com>
Sent: Sunday, January 08, 2012 3:37 PM
Subject: [tuning] Re: Recognizing the consonances

Mario, what intervals in 12-EDO are consonant under your scheme?

-Mike

On Sun, Jan 8, 2012 at 3:34 PM, Mario Pizarro <piagui@...> wrote:
>
> Dear members,
>
> The reference of 0.0005 determines how sensible is the selection of > acceptable consonances. Should this value is reduced to 0.0002, the > acceptable consonant ratios diminish. The numbered elements are cells of > the progression.
>
> M 139 1.17055326935 CELL
> M 140 1.171875
> J 141 1.17320082553
> J 142 1.17452815104
> M 143 1.17585436996
> M 144 1.17718208638
> 47/40 = 1.175 - 1.174528151= 0,000471 < 0.00 05 Then 1.175 is almost > consonant.
> <<<<<<
> M 493 1.74791410141
> M 494 1.74988775930
> J 495 1.75186753174
> J 496 1.75384954404
> M 497 1.75582990393
> M 498 1.7578125
> 7/4 = 1.75 - 1.74988775930 = 0.0001123 <
> 0.0005
> Then 7/4 is almost consonant.
> <<<<<<
> M 221 1.28434083527
> M 222 1.28579104922
> J 223 1.28724575606
> J 224 1.28870210871
> M 225 1.29015724720
> M 226 1.29161402876
> 9/7 = 1.2857142857- 1.2857910492 = 0.00007676352 < 0.0005
>
> Then 9/7 is almost consonant.
> <<<<<<
> M 389 1.55370142347
> M 390 1.55545578604
> J 391 1.55721558376
> J 392 1.55897737247
> M 393 1.56073769238
> M 394 1.5625
> 14/9 = 1.555555555 - 1.55545578604= 0.00009976951<<0.0005
> Then 14/9 is practically consonant.
>
>
> Mario
> January, 8

------------------------------------

You can configure your subscription by sending an empty email to one
of these addresses (from the address at which you receive the list):
tuning-subscribe@yahoogroups.com - join the tuning group.
tuning-unsubscribe@yahoogroups.com - leave the group.
tuning-nomail@yahoogroups.com - turn off mail from the group.
tuning-digest@yahoogroups.com - set group to send daily digests.
tuning-normal@yahoogroups.com - set group to send individual emails.
tuning-help@yahoogroups.com - receive general help information.
Yahoo! Groups Links

🔗Mike Battaglia <battaglia01@...>

1/18/2012 12:32:52 PM

700 cents sounds consonant to me.

On Jan 18, 2012, at 3:17 PM, Mario Pizarro <piagui@...> wrote:

Mike,

Sorry, this is a delayed response.

I was checking internet data about consonance and concluded that my scheme
is not a trusty scheme.

Since all intervals in 12-EDO are exponentials I think none of these
intervals is consonant.

If I am wrong, please tell me why.

Mario