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A comprehensive theory is formulated for the central formation of the pitch of complex tones, i.e., periodicity 
pitch [Schouten, Ritsma, and Cardozo, J. Acoust. Soc. Amer. 34, 1418-1424 (1962)]. This theory is a logical 
deduction from statistical estimation theory of the optimal estimate for fundamental frequency, when this 
estimate is constrained in ways inferred from empirical phenomena. The basic constraints are (i) the estimator 
receives noisy information on the frequencies, but not amplitudes and phases, of aurally resolvable simple tones 
from the stimulus and its aural combination tones, and (ii) the estimator presumes all stimuli arc periodic with 
spectra compdsin• successive harmonics. The stochastic signals represenfin• the frequencies of resolved tones 
are characterized by independent Gaussian distributions with mean equal to the frequency represented and a 
variance that serves as free parmeter. The theory is applicable whether frequency is coded by place or time. 
Optimum estimates of fundamental frequency and harmonic numbers are calculated upon each stimulus presen- 
tation. Multimodal probability distributions for the estimated fundamental are predicted in consequence of 
variability in the estimated harmonic numbers. Quantification of the variance parameter from musical intelligi- 
bility data in Houtsma and Goldstein [l. Acoust. Soc. Amer. $1,520-529 (1972)] shows it to be dependent 
upon the frequency represented and not upon other stimulus frequencies. The quantified optimum processor 
theory consolidates known data on pitch of complex tones. 

Subject Classification: 4.11, 4.9. 

INTRODUCTION 

Complex periodic sounds in a normal speech or music 
context have a pitch that covaries with fundamental 
frequency independently of the presence or absence of 
energy in the sound spectrum at this frequency 
(Seebeck, 1841; Fletcher, 192.4; Schouten, 1938). Clas- 
sical theories have explained this phenomenon in terms 
of simple spectral cues (Helmholtz, 1863) or temporal 
cues (Schouten, 1940a) that could be measured in the 
output of the cochlear spectrum analyzer at single 
characteristic frequencies. 

The inadequacy of these cochlear-based conceptions 
of pitch processing for complex tones was recently 
proved by musical intelligibility tests (Houtsma and 
Goldstein, 1972) with the discovery that the pitch of 
complex tones can be heard equally well when two-tone 
sounds are presented monotically (both constituent 
tones in one ear) or dichotically (one simple tone in each 
ear). Moreover, systematic intelligibility experiments 
with sounds comprising two successive harmonics dem- 
onstrated that only harmonics of relatively low order 
(< •, 10) were effective in communicating musical pitch. 
In some circumstances, the low harmonics that com- 
municate pitch are provided by aural combination tones 
(Goldstein, 1967a). These results, added to the be- 
havioral measnres (Helmholtz, 1863; Plomp, 1964) and 
physiological measures (Bdkf•sy, 1960; Kiang, 1965; 
Goldstein, Baer, and Kiang, 1971) of the acuity of aural 
frequency resolution suggested the hypothesis that the 
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pitch of these complex tones is necessarily mediated by a 
central processor that operates effectively only with 
signals derived from aurally resolved simple tones. This 
paper presents a unifying psychophysical theory of the 
central processor of pitch of complex tones, which was 
developed logically from this hypothesis, data from our 
reported musical intelligibility experiments, and an 
accumulation of past research. The logic of this develop- 
ment was drawn from statistical estimation theory and 
was motivated by related applications by Siebert 
(1968, 1970) and Colburn (1969). 

Basically, the central processor may be viewed as a 
recognizer of spectral patterns supplied by the periph- 
eral frequency analyzers. Recognition is accomplished 
through selection of the best matching stored pattern or 
template, where the templates correspond to periodic 
signals comprising successive harmonics. The power of 
the present formulation lies in the efficacy of an 
idealized representation of the peripheral spectral pat- 
terns for complex tones. The peripheral frequency 
analyzer extracts from complex-tone stimuli all con- 
stituent simple tones that differ in frequency from their 
neighbors by more than some resolution limit. The 
input spectral patterns are then defined by recording 
with some random error only the frequency of each 
resolved simple tone. Periodicity pitch is formally as- 
signed by using a maximum likelihood statistical estima- 
tion procedure to fit the template. 

Knowledge of the physiological implementation of the 
pitch processor is not a necessary ingredient of the 
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Fio. 1. Optimum processor theory of the central formation of the pitch of complex tones. The idealized spectrum analyzers supply the 
independent noisy channels with separate representations of each resolved spectral component in the stimulus. Information on frequency 
of each component, but not amplitude or phase, is conveyed stochastically to the optimum processor. The hypotheses of independent 
stochastic representations of the component frequendes and of optimum estimation of the fundamental are tested with psychophysical 
data. The stimuli are restricted to complex tones with spectral spacings such that aural resolution fails uniformly with increasing fre- 
quency of the components; viz, if any component is not resolved then no other component of higher frequency is separable from any 
neighboring component. 

theory and is therefore treated as outside the scope of 
this report. It is important instead to appreciate the 
theoretical quantities and the logic defined by this pitch 
theory. The randomness with which the frequencies of 
resolved constituent tones are represented is found to be 
nearly independent of the frequency spacing between 
neighboring tones. This randomness is quantified in the 
theory by representing the frequency of ehch resolved 
simple tone with a sample from an independent 
Gaussian distribution centered on the true frequency. 
The variance of the Gaussian distribution is a function 

of the true frequency; it is the most fundamental 
quantity in the model. 

Because of the stochastic nature of the frequency 
pattern seen by the central processor, the pitch esti- 
mated is a random function of any given cbmplex tone 

' stimulus. The most complete statement of predictions 
by the theory constitutes a probability distribution of 
periodicity pitch estimates for a given stimulus. In 
general, the probability distributions are found to be 
multimodal, where the modes are relatively narrow 
compared with their spacing; for some considerations 
these distributions may be treated as discrete. 

For a periodic complex tone comprising successive 
harmonics the predicted probability distribution for 
periodicity pitch will include a principal mode centered 
on the true periodic frequency of the stimulus. Pitch 
estimates within the principal mode obtain when the 
harmonic numbers in the template are correctly aligned 
with the input spectral pattern. Misalignments generate 
secondary modes. The position, width, and probability 
of the various modes supply comprehensive, quanti- 
tative descriptions and predictions for periodicity pitch 
phenomena with complex tones. 

In Sections I and II and Appendices A-C, the theory 
is deduced by assuming optimum processing of stimulus 
information, where this processing is constrained in 
ways inferred from empirical phenomena. Sections I and 
II-D supply 'an outline of the theory adequate for 
understanding the treatments of experimental phe- 
nomena in Secs. III-VII. These latter sections serve to 

demonstrate the existence of a unifying logic for be- 
havioral phenomena on pitch of complex tones. Sections 
II-A-II-C and Appendices A-C contain the mathe- 
matical development of the theory based upon maxi- 
mum likelihood estimation. A critical appraisal of the 
theory requires reading the mathematical development. 

Sections VIII and IX discuss what the author believes 

to be the most relevant experimental and theoretical 
antecedants of the present work. Aural combination 
tones (Sec. VIII) misguided periodicity pitch theory for 
considerable time. Studies by 'many investigators over a 
long period of time provided the empirical bases for, and 
indeed in part anticipated, the constraints assumed in 
the present optimum proces. sor formulation (Sec. IX). 
Finally, Sec. X offers suggestions for further work. 

I. OUTLINE OF THEORY OF PITCH FORMATION 

The heart of this theory is the hypothesis that a 
central processor makes an optimum estimat• of the 
fundamental frequency on the basis of a noisy repre- 
sentation of the tonotopically organized stimulus (Fig. 
1). The constraint on the central processor is that it 
presumes all stimuli are periodic (Schouten, 1940b; 
de Boer, 1956) with spectra comprising only successive 
harmonics. Estimates of both fundamental frequency 
(f0) and the harmonic numbers (•,•+1,•+2,...) 
must be obtained from the input to the processor. This 
constraint is natural for the stimuli comprising two 
unknown successive harmonics/that were employed for 
our previously reported musical intelligibility experi- 
ments (Hourstoa and Goldstein, 1972). This constraint, 
however, is maintained as a property of the central 
processor even for stimuli for which prior knowledge is 
incompatible, such as known harmonic numbers, or 
known inharmonicity. 

At present the theory is restricted to complex-tone 
stimuli with spectral spacings that cause aural fre- 
quency resolution to fail uniformly, whenever it fails. 
In particular, if any component is not resolved no other 
component of higher frequency is separable from a 
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higher or lower frequency component. This restriction is 
meant to exclude complex tones that could supply the 
central processor with useful information in the form of 
noncontiguous groups of tones (as discussed in Sec. X). 
By hypothesis, the central processor, when operating on 
the class of complex tones delineated, receives useful 
information from both ears only for spectral components 
that are individually resolved by the aural spectrum 
analyzer. Furthermore, it is hypothesized that (within 
limits) only information on frequency of each com- 
ponent but not on amplitude or phase is preserved in 
this measurement. Finally, it is hypothesized that fre- 
quency information for each aurally resolved simple 
tone is degraded in independent noisy channels. These 
last three hypotheses, (i) aural frequency resolution, 
(if) retention only of frequency information for each 
resolved component, and (iii) independent noisy trans- 
mission of the frequency information, reduce to one 
hypothesis, namely, that the component frequencies in 
the stimulus are represented at the input to the central 
processor by independent stochastic signals. The present 
theory is a strictly mathematical development of the 
hypotheses of independent stochastic representations of 
component frequencies and of optimum estimation of 
the fundamental. 

The stochastic frequency signals {X•} representing 
the aurally resolved simple tones with frequencies 
are characterized by static samples from independent 
Gaussian probability- distributions each with mean 
and standard deviation •}. This standard deviation is 

the only free parameter of the model. The finding of 
primary importance to be demonstrated in this paper is 
that known data on pitch of complex tones can be 
comprehensively treated with a standard deviation that 
is a function only of the frequency represented by each 
probability distribution, that is, ak'•a[j't•], and this 
function appears to be similar among individuals. 

Note in Fig. 1 that the simple view (circa 1863) of 
aural frequency analysis invoked here is all we need. 
Ohm (1843) provided us with the conception of aural 
signal decomposition in accord with Fourier's series. 
Helmholtz (1863) reminded us of the physical and 
psychophysical requirements for limited frequency reso- 
lution and gave the first evidence for aural insensitivity 
to the phases of resolved components. Conceptions of 
mechanisms for aural frequency resolution, however, 
need not be restricted to his peripheral bandpass filters, 
as neural processing could also be involved. The 
confounding role of aural combination tones will be 
treated in Sees. VII and VIII. 

Note also that the concept that the optimum proces- 
sor operates on signals representing the constituent 
frequencies of complex-tone stimuli does not necessarily 
imply the use of tonotopic or place information per se as 
the measure of frequency. For example, temporal 
periods of simple tones are not ruled out as the measure 
of frequency. To emphasize that this formal theory does' 

not require place information per se, we assume that the 
frequency channels are not rank ordered or labeled 
according to characteristic frequencies. Thus the opti- 
mum processor must measure the rank order from the 
frequency signals. In principle, the rank order measured 
from unlabeled channels could differ from that indicated 

by labeled channels. In fact, however, this difference 
may be ignored because from the quantities that 
emerge from this analysis it is apparent that negligible 
probability of incorrect rank ordering results from 
ranking the stochastic samples of the frequency signals 
of interest. Periodicity pitch (Licklider, 1954) is sug- 
gested in Fig. I as an appropriate designation for the 
phenomenon of pitch of complex tones because the 
central processor presumes periodic stimuli, and not 
because temporal periods are presumed to mediate pitch 
as in earlier usage of the term. 

II. MATHEMATICAL FORMULATION 

A. Maximum Likelihood Estimation of Harmonic 
Numbers and Fundamental 

The fundamental estimator f0 is given in this section 
for a two-component signal; this solution is extended in 
Sec. II-C to complex tones with more components. The 
stochastic frequency signals {X•}, representing the 
aurally resolved simple tones with frequencies {f•} are 
characterized with static samples from Gaussian proba- 
bility distributions with mean ./• and standard deviation 
a•. This standard deviation is the only free parameter of 
the model. A crucial theoretical question is whether 
empirical data on pitch of complex tones can be 
comprehensively described, interrelated, and predicted 
by treating the standard deviation as a function of a 
single variable, the frequency fl. We show that it can, 
to a good approximation. 

Given a two-component stimulus with resolvable 
tones of frequencies f• ahd f2 (J'2>f•), the transforma- 
tions by the independent noisy channels (Fig. 1) are 
specified by Eq. 1. The assumption that the variance is a 
function of a single frequency variable is made for 
convenience in the mathematical development; it does 
not prejudice the test of this assumption in Sec. III: 

f,-• 3:,, 
(1) 

where 

G[f},.•]------ (2•rv•2) -t exp[-- (x•--/•)V2.} 2] 
and 

•=a[f•]. 

The central processor makes an optimum estimate 
[maximum likelihood estimation (Van Trees, 1968)-] of 
the unknown stimulus fundamental on the presumption 
that the stimulus frequencies are unknown successive 
harmonics. This estimate is obtained by choosing 
the unknown fundamental and harmonic numbers 
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0•0; •l, •+ 1) to maximize the probability of the samples 
as given in Eq. 2, 

e• • (2) X (2•)•Sa 2aa • 
where 

•k=v['(•--l+k)f0], v]--] as in Eq. 1. 

Following standard procedure we replace Eq. 2 with a 
convenient monotonic transformation, its natural loga- 
rithm, Eq. 3: 

A = --ln2•ra•a•-- (xx--•fo):/2a• • 
-[x•-(•+ l)/o-lV2a• •. (3) 

Equation 3 cannot be solved for the maximizing • and 
], without specifying the functional dependence of the 
standard deviation v upon the estimated frequencies. 
The ideal system knows the form of this function. One 
approximate procedure is to assume that v is constant in 
a local region, then calculate v from empirical data on 
the basis of the approximate estimator, and finally 
iterate the calculations on the basis of this first ap- 
proximation of v. This procedure is abbreviated here by 
assuming a local behavior for v which (after initial 
calculations) is known to approximate the v function 
globally better than a constant; v is taken as locally 
proportional to frequency: 

v[-/s,]'•'KE.[•]' f•, (4) 

where K•f•] is locally constant. By substituting Ex- 
pression 4 in Eq. 3 and maximizing with respect to 
with K•_J] locally constant, we derive Eq. 5. (From 
calculated first approximations of v, the first term on the 
right of Eq. 3 is known to be negligible.) 

(xd•)•+Exd(•+ 
/o= (s) 

The estimate of the fundamental, f0, is made on the 
basis of the frequency samples, (x•,x2), and the esti- 
mated harmonic numbers, fl and •+1. An optimum 
choice for • is given by choice of that integral • which 
maximizes Eq. 3. The sample space can be partitioned 
into regions for which different values of • are optimum. 
A simple solution for this partitioning obtains because 
for some values of (x•,x•) two different successive values 
of integral fl give equal likelihoods. By substituting 
Eq. 5 in Eq. 3 and equating for fl--m and fl=m+l, we 
get the desired partitioning Eq. 6. (The first term on the 
right of Eq. 3 is again negligiblc for relevant values of 
and m.) 

(6) 

Figure 2 shows the estimation procedure of the 
optimum central processor for a two-tone signal. The 

m+l 

• ' SECTO• I ,•- •-• • -.'./ 

I •/ THE O•TIMUM PITCH ESTIMATE IS 

I I I I I 

01ST•IflUTION• 

OF X• 

Fla. 2. •c•l ope•t[on of the op•mum pro•s•r •or ß two- 
•mponcnr si•l. Two in&pendent G•u•an r•dom w•ablcs 
X• •d X• represent •c f•ucndes/• •nd [•, and define the two- 
dimen•oned •mple •ce. The •mple sp•ce is par•don• into 
•ctors such that •11 •in• wi•in • given •tor sh•re a common 
m•ximum-Ukcliho• es•m•te of harmonic numb•s, • and •+1. 
Th• h•rmonic humors a• u• to cMcul•tc the m•ximum- 
like•ho• •fim• of fundamental frequency, •0. The dis•n- 
dnuity of t•s esSmate for •mple wlucs •t •ctor •und•ies is 
illust•d by the breaks in the •uipitch line for/0 I. 

sample space [X•,X(] is characterized by the inde- 
pendent Gaussian probability distributions of the fre- 
quency signals. Sectors for different harmonic numbers 
partition the sample space. Location of a sample point 
(xx,x2) in the ruth sector fixes the estimate of the 
harmonic numbers as m and m+l. Finally, the funda- 
mental is estimated by Eq. 5 which is approximated by 
the linear estimator 7 shown in Fig. 2. The linear 
estimator is derived by treating the variance function as 
locally constant when maximizing Eq. 3. The bound- 
aries defined by Eq. 6 also apply to the linear estimator. 
The linear and quadratic estimators converge near the 
harmonic conditions x•/x•,•, (•q- 1)//i: 

fo=Xd2fl+x•/2(n+ l). (7) 

An important property of the fundamental estimator 
is its discontinuity for sample points that traverse the 
boundaries of the sectors. This discontinuity is illus- 
trated in Fig. 2 by the separation between lines of equal 
pitch (given by the linear estimator) in adjacent sectors. 
[-Nole: The theory allows for inversions x•x• for 
fa>fx, in which case the rank ordering specified in 
Fig. I exchanges the roles of x• and x• in the estimation 
procedure. However, for relevant signals and a, the 
probability of inversions is negligible and is ignored in 
the remainder of this paper.] 
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B. Probability Distribution of the 
Estimated Fundamental 

An accurate characterization of the optimum funda- 
mental estimate ]a for signals with two resolvable 
spectral components is given by a Gaussian approxima- 
tion of the estimates from each sector. The unimodal 
nature of the estimator within each sector can be 

deduced readily from Fig. 2. Beyond this fact, the 
degree of accuracy of the Gaussian approximation, 
though high, is not an issue here, because the pitch 
theory requires no more detail on the probability 
functions than is required for the Gaussian approxima- 
tion. Given the signal frequencies and their standard 
deviations, one can calculate the probability that a 
sample falls in sector rs, Pr[•=m-], the expected funda- 
mental estimate in sector m, ]0m, and the variance of 
this estimate, •0•. These quantities define a multimodal 
Gaussian characterization of f0 (Eq. 8), 

where 

Vrl-/J=m]= Vroblgt=ml fx, f2, •a, •2'], 

s[/01a= 

(8) 

O , 

• O'õIi 
J 

• 0.• 

0 • I. L 

I.O 

0 • I 
O.6 O.• 

n 6 n.10 It .,,,, , ..,,I I I,,.. 

n=4 n-8 
LO 1.2 1.4 0.6 O.S 1.0 1.2 1.4 

•o/'o io,,o 

F•o. 3. Discretized example of the probability distributions of 
the optimum processor estimate of fundamental frequency, f0- The 
stimulus is periodic, comprising the successive harmonics, f• = nI'o 
and • (n+l)fa. The model parameters are spedfled by 
-0.01/xtJ. The distributions are multimodal, each mode being 
approximately Gaussian with standard deviation one-half percent 
of its mean. Errors by the central processor in estimating' the 
harmonic numbers in the stimulus underlie the multiplicity of 
modes. 

A principal sector, n, is defined as one in which (f•,fa) 
lies or on which it borders. The sector probabilities are 
then given exactly in Eq. 9. (See Appendix A for 
derivation.) 

PrEO, = m= n] = « (erfER,•/v•]+erfER•/v•]), 
PrE• = m < n] = « (erfER,•/v•] - erfER•,•/v• ]), 
Pr[t•=m>n]=«(erf[R•a/v•]-erf[R,•v/V•]), (9) 

where 

• = I (S•d,--•)/• I E(S•,/•)•+ 1]-•- 

S•S• are the slopes of the lines bounding the ruth 
sector. R• may be understud g•metricMly • the 
distance between the center of the distribution (]•,f•) 
and the line x•=S•x• in normali•d s•ple space (see 
Fig. A-I). 

Restricting ourselves here to linear estimato• of •,, 
we require only the first moments of •e s•ple values 
within the ruth sector. The• moments are given exactly 
in Eq. 10. (S• Appendix B for derivation.) 

_ Xl--fl •. exp--R•/2 Y• E[• •=m]=/[(•/•]S•)•+I]• 
e•--R•/2 •{(2•)t pr[fl=m]}-•, 

00) 

_ Fx•--f• ] • e•--R•Z/2 

By taking the conditional probability of •e linear 
estimator 7 and using the definitions in Eq. 10, we get 
the expected linear estimate of •e fund•ental •thin 
the ruth sector (Eq. 11), 

2(m+t) 
The exact cloud Iota for the variance of the estimate is 

given in Appendix C. This result, though cumber•me, 
pmvid• a check for simpler approximations of the 
variance given in Sec II-C. 

C. Some Useful Approximations 

The linear fundamental estimate f0 for hr-component 
signals 12 is obtained from the N-dimensional likelihood 
function (cf. Eq. 3) by treating the variance function 
locally constant during maximization. This solution 
converges to the exact solution when the sample values 
approach harmonic relations. 

(12) 
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where 

l+k)/0]. 

We have not found a useful formulation of Pr[•=m] 
for the N-dimensional case (N> 2). 

Simple approximations of the first and second mo- 
ments of Eq. 12 within the ruth volume are obtained 
from the multivariate probability distribution along the 
harmonic "line," i.e., xk=x,(m--1-Fk)/ra, k = 9_, 3, ..., 
•r, as given by Eqs. 13 and 14, 

', ,-, •r,• 2 /•-, x' • / (1.3) 

where 

(14) 

Combining Eqs. 13 and 14 for f•= (m--l+k)fo gives a 
useful formula 15 that relates the precision of the 
estimate to the precision of the components, 

Z (15) 

for 

A = (m- 1 

D. Ex•anples of Probability Distribution for •o 

The nature of the probability distributions 8 for the 
fundamental estimate f0 is illustrated in Fig. 3 for 
behaviorally relevant values of ß (as established in 
Sec. III). The distributions are given (Eqs. 8-11, and 
14) for two-tone signals comprising successive harmonics 
n and n+l. Each of the two frequencies in the signal is 
communicated to the central pitch processor with a high 
precision of a•/fk=O.O1/x/2. Discretized distributions 
are shown in Fig. 3, because the precision of each mode 
is great (•o,•/]•=0.01/2) compared with the spacing 
between modes. 

The salient property of these distributions is the 
increasingly large probability of jump errors in esti- 
mating the fundamental f0 that occur with increasing 
harmonic numbers in the stimulus. These occur because 

although the central system is allowed to operate 
optimally it nevertheless errs in estimating the harmonic 
numbers in the stimulus. Schouten, Ritsma and Cardozo 
(1962, Fig. 6) gave the first empirical demonstration of 
this ambiguity phenomenon for harmonic stimuli with 
harmonic numbers known to the listener, and thereby 
provided very important evidence for the relevance of 
the present theoretical approach. Note that these pitch 
ambiguities are closer to the fundamental than the 
commonly discussed octave ambiguity, whose occur- 
rence appears to be either less significant or not 
directly related to pitch perception (Deutsch, 1972). 
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0.8 

o.? 
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0.5 

%o.z 

•o.• 

0.00333 

o 
I 2 5 IO 15 

n,HARMOMIC NUMBER OF LOWER TONE 

FIG. 4. Probability of correct estimation of harmonic numbers in 
a two-tone signal with frequencies n/o and (n-Fl)/o. The parame- 
ter is the relative standard deviation of the raridom signals 
resenting the component frequencies. 

The distributions given in Fig. 3 are-closely ap- 
proximated (cf. Eq. 8) by Eq. 16, 

For many practical purposes the most important 
quantity in Eqs. 16 and 8 is the probability of correctly 
estimating the harmonic numbers in the stimulus 
(PrF//=n]), because a correct • leads to a predse 
measurement of the stimulus period. Figures 4 and 5 
give these probabilities 9 for component frequency 
predsions covering the range of interest; the effect of 
harmonic number is manifest. 

Ill. QUANTII•ICATION OF THE MODEL 
PARAMETER nn 

Quantification of the model parameter a• is obtained 
with data from our previously reported experiments on 
musical intelligibility (Houtsma and Goldstein 1970, 
1971, 1972). The ability of musically skilled subjects to 
identify eight different standard musical intervals was 
measured in an eight-alternative forced-choice experi- 
ment as a function of the stimulus fundamental and 
harmonic numbers. Each musical interval was com- 

municated by two sounds presented in succession, each 
sound comprising two unknown successive harmonics, • 
and n-I-1, of the desired fundamental. The fundamental 
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0.03• • , • • • [ I • • • ,•1 
0.003 0.O• O.O3 O.I 

Fro. 5. Same as Fig. 4 except with lower harmordc number as 
parameter. 

of the first note was fixed for each intelligibility test 
at f0. The fundamental of the second note f'o was 
located above and below f0 at approximately semi- 
tone (0.06) intervals over the range 4/5x<flo/fox< 5/4. 
The harmonic number, n, was chosen randomly from 
a range of three for each sound presentation so that 
the subjects were forced to use information from both 
spectral components in each sound rather than to base 
their responses on a single component from each sound. 

Contours of percentage of correct identification as a 
function of the stimulus parameters are reproduced 
(Houtsma and Goldstein 1971, 1972) in Fig. 6 for 
subject Adrian Houtsma (see also Figs. 8-10). These 
data are the average of the three presentation condi- 
tions that minimized the influence of aural combination 

tones and gave similar results. These conditions were 
low-intensity monotic, low-intensity dichotic, and mod- 
erate intensity dichotic. Overlaying the data in Fig. 6 
are hyperbolae that define constant average frequency 
for the stimulus components. If the variance of the 
frequency signals received by the central processor 
depends primarily upon the frequency represented by 
each signal and not upon the spacing of the frequencies, 
then the musical intelligibility performance along each 
hyperbola should be closely predicted by a constant 
value of ,. 

The subjects' decision strategy in utilizing the output 
of the central processor of pitch (see Fig. 1) must be 
specified for the musical intelligibility tests. An opti- 
mum strategy would ignore individual responses to the 
first note of each interval, because this note is the 
same for each presentation in a test run. The pitch 
of the first note could be remembered with great pre- 
cision as a reference for interval measurement on the 

second note. Or, equivalent performance could be ob- 
tained by ignoring the first note and responding only to 

the second. Next, optimum decision strategy would 
partition the pitch scale to isolate the multiple modes of 
the central processor response in accord with the esti- 
mated harmonic numbers. The partitioning required can 
be appreciated by referring to Fig. 3 and considering 
how one could discriminate between several distribu- 

tions located along a common scale when their principal 
modes are spaced by approximately 6%. The compact- 
ness of the various modes in the processor response 
would enable correct responses despite ambiguities of 
pitch. Data and central processor theory agree if, 
instead of an optimum strategy, a simple partitioning of 
the pitch scale is presumed, and the subject reports the 
stimulus note (i.e., one of the 8 standards) that is 
closest to the sample response of the central processor. 
No distinction between log or linear scale is required 
here. Because the spacing between modes within each 
probability distribution is comparable to, or larger than, 
the spacing between principal modes, a sample response 
from a nonprincipal (ambiguous) mode will, except for 
edge effects, result in an incorrect reported note. 
Optimal strategy for pitch ambiguities below or above 
the lowest and highest stimulus notes, would be to 
report the lowest and highest notes. The edge effects do 
not appear to be utilized optimally; instead the as- 
sumption of random response when edge ambiguities 
occur gives better agreement between data and theory. 
This nonoptimum decision strategy assumed for re- 
porting notes gives the simple rule that performance in 
our musical intelligibility experiment is closely pre- 
dicted by the probability of correctly estimating the 
harmonic numbers in the stimulus and thereby per- 
ceiving a pitch from the principal mode. 

0 0 

0.10 0.20 0.30 0,40 050 060 070 0,80 0.90 1.0 

FUNDAMENTAL FREOUEN CY, fo(kHzl 

FIG. 6. Contours of equal intelligibillty (percent correct identi- 
fication) of 8 neighboring, standard, two-note, musical intervals as 
a function of the average parameters of the two-tone periDOt 
stimuli used to communicaLe e•ch note. These da• are the 
average of the three presentation conditions that miamizeal the 
influence of aural combination tones and gave similar results, 
low-intensity monotic and dieboric, and moderate intensity 
dichotic. (Reproduced from Hourstoa and Goldstein, 1971, 1972.) 
Overlaying the data are h•erbo]ae that deane constant average 
frequency for the stimulus components. 
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0,10 

0.03 

0.01 

o.•o LO 3.0 io.o 

FREQUENCY OF SIMPLE TONE COMPONENT, f(kHz) 

FIo. 7. Relative standard deviations characterizing the pre- 
cision with which frequency information from aurally resolved 
tones is communicated to the central processor. Theoretically 
derived from musical intelligibility data for three subjects (data 
from Hourstoa and Goldstein, 1971, 1972). Dashed lines indicate 
extrapolations. 

The standard deviation a was calculated at all points 
of intersection in Fig. 6 between the four data curves for 
less than 100% correct and the hyperbola, of constant 
average stimulus frequency. Probability of correct esti- 
mation of stimulus harmonics, Pr[•--nJ, was taken as 
the predictor of percentage correct, and the value of, 
required to fit the data was calculated from Fig. 5. 
Values found for, along a given hyperbola were indeed 
very similar, except for higher, inconsistent values often 
found from the 200-/o correct contour. For example, , 
calculated from the 200'/o contour was often nearly twice 
as large as the remaining three , values which would 
span a range of only 15%. Consistent values of, at' each 
average frequency were geometrically averaged to 
obtain the single valued function given in Fig. 7. A 
similar procedure was followed for the data from two 
other subjects (SW and NH). 

% CORRECT 

4, THEORETICAL PERFORMANCE SUGJECT NH 20•+ (;ATA: O: 80, o: 60 A = 40, +: 20% CORRECT) 

I I I I I I I I I I 
010 020 0.30 0.40 0.50 0,60 0,70 O.aO 0,90 1.0 

FUNOAMENTAL FREOUENCY,foikHz) 

Fro. 9. Subject NH, as in Fig. 8. 

Figures 8-10 show the relationship between the 
derived *l-f-] functions and the musical intelligibility 
performance for each subject. Data for each subject are 
compared directly with the theoretical performance 
corresponding to ,[-fJ. Extensions of the theoretical 
curves beyond available data reflect the extrapolations 
assumed in Fig. 7. Figure 8 shows that data and theory 
are everywhere consistent except for the 200/o contour, 
where empirical performance is consistently poorer than 
predicted. Subject AH (Adrian Houtsma) was the most 
practiced (Houtsma, 1971) and probably produced the 
most reliable data of the three subjects. Data for the 
two other subjects (Figs. 9 and 10) also show good 
consistency, although somewhat 'poorer than that of 
AH. Both show some departures between theory and 
data for the 200'/o contour at low funda/mentals, and in 
addition for the 80% contour at high fundamentals. 
Subject AH's 20% contour departure is similar for both 
dichotic and low-intensity monotic data. We have as 
yet no explanation for these small and probably 
unimportant inconsistencies. They may be caused by 

12 THEORETICAL PERFORMANCE SUBJECT AH 

12 

z c 

O.10 0.20 O 30 0.40 0.50 0.60 0,70 0,80 O.90 1,0 

FUNDAMENTAL FREQUENCY, Io(kHz) 

Yro. 8. Theoretical (based on Fig. 7) and measured (Boutsma 
and Goldstein, 1971, 1972) performance in musical intelligibility 
experiment for subject AH. 

the variability of data between sessions, they may come 
from data processing, or represent an additional in- 

ø ø 

O. lO 0,20 0.30 0,40 0,50 0,60 0.70 OBO 090 LO 

FUNOAMENTAL FREOUENCY. Io(kHz } 

Fro. 10. Subject $W, as in Fig. 8. 
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crease in a for very narrow spacing between stimulus 
components, or additional confusions caused by the 
first note when this reference note has a very low 
probability of being correctly heard and reinforced. 

In the hypothesized theory the standard deviation a• 
describes the randomness with which frequency infor- 
mation of aurally resolved spectral components is 
transmitted to the central pitch processor. The demon- 
stration given here (Figs. 7-10) that a• can reasonably 
be regarded as a function only of the frequency trans- 
mitred is an important result. A possible outcome of the 
analysis of the musical intelligibility data could have 
been a a• that depended strongly upon the spacing 
between stimulus frequencies. The actual outcome (that 
a•[f•,f•]•r[f•]) demonstrates that deterioration of 
musical intelligibility with increasing harmonic number 
is attributable primarily to deterioration in the central 
processor's optimum estimation of harmonic number. It 
is unnecessary to attribute this deteriorating perform- 
ance to a gradual failure of aural frequency resolution 
with increasing harmonic number. At some high har- 
monic number presumably the failure of aural resolution 
blocks the operation of the central processor; evidence 
will be given in Sec. VII to support this presumption. 

In the following sections it will be demonstrated that 
the optimum processor theory as quantified in this 
section consolidates data on pitch of complex tones 
published by other investigators. 

IV. DOMINANT REGION PHENOMENON 

Ritsma (1967a), reporting the first successful experi- 
ments on periodicity pitch of sounds comprising two 

6 

--a•- 5 '• • THEORY RITSMA'S 0ATA 
•-• SUBJECT AER•O 
O•: JH=O 
"'• "J' 4 NG=• 
•- ,• RR =c' 

O.". 

:•>. 

,.•o 

0 i i I I I I 
0.050 O.iO 0.20 0.50 I.O 2.O 

FUNDAMENTAL FRI[QUENCY, fo (kHz) 

FIO. It. Dominant region phenomenon for a two-tone signal 
with frequencies n f0 and (n+l)f0. Changes in fundamental J'0 are 
discriminated via periodicity pitch optimally with stimuli com- 
prising the harmonic numbers indicated by the ordinate. (Broad 
optima spanning more than one integer are represented by their 
nonintegral average.) Theoretical optimum processor predictions 
for each of three subjects are based on the variance functions in 
Fig. 7. Ritsma (1967a) discovered the empirical phenomenon. 

successive harmonics, found that for stimuli with funda- 
mental frequencies of 100-400 Hz, harmonics in the 
range 3-5 were most effective in communicating pitch 
changes. These results were interpreted as confirming 
evidence that the region of the third to fifth harmonics 
is dominant in providing periodicity pitch information 
for wideband stimuli as well. 

A dominant-region phenomenon similar to Ritsma's 
is predicted by the present optimum processor theory 
for discrimination of periodidty pitch. Given two 
signals each with similar harmonics n and n+ 1 but with 
fundamentals that differ by 4- [ z•f0l from a standard fo, 
their discriminability from the standard can be calcuo 
lated on the assumptions that the subject is attending 
only to the principal mode and that he reports randomly 
froha nonprincipal modes. The percent of correct re- 
sponses, P(c), in a one-interval, two-alternative, forced- 
choice experiment (Green and Swets, 1966) is readily 
calculated from Eq. 8 for unbiased responses. 

P(c) = «+PrEg= n]- J0 du(2•r)-I exp-u'/2. 
For a unimodal probability distribution, we would have 

P(c) = }-{-fo '•' du(2•r)-• exp--u•/2. 
For small d' that is not much greater than unity the last 
integral is approximated by d' (2•r)-t. Thus the measure 
of discriminability d' for periodicity pitch can be ap- 
proximated as in Eq. 17, 

I •I01. PrEfl = n-]/o-o,,. (17) 

Equation 17 can be evaluated conveniently by applying 
the approximation of Eq. 4 to the average stimulus fre- 
quency, so that from Eq. 16 
V•(n-{-«)fo. The values of *Ef]/f and PrE/l=n-] are 
given by Figs. 7 and 5, respectively. Computations of d' 
as a function of n for fixed f0 and &f0 reveal that pitch 
discriminability is usually best, i.e., d' is largest, at some 
intermediate n. The connected curves in Fig. 11 give 
these optima for each of the three subjects represented 
in Fig. 7. The nonintegral entries in Fig. 11 reflect the 
broadness of the theoretical maxima which often span 
adjacent harmonic numbers. Ritsma's data are similarly 
plotted in Fig. 11. 

For fundamentals below 500 Hz the theoretical 

optimum may be understood as the interaction of two 
opposing tendencies with changing harmonic number. 
Higher harmonic numbers benefit from increased pre- 
cision (lower a/f in Fig. 7), but suffer from more fre- 
quent errors in central estimation of harmonic numbers. 
At fundamentals above 500 Hz the deteriorating pre- 
cision of higher frequencies (Fig. 7) dominates the 
theoretical prediction. It is clear from the differing 
theoretical curves in Fig. 11 that the magnitude as well 
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as the shape of the derived variance functions (Fig. 7) 
are reflected in the predicted optima. 

The agreement with Ritsma's (1967a) data shown in 
Fig. 11 within and across subjects appears highly 
significant. According to the present theory, the domi- 
nant region effect for low fundamentals would not apply 
to wideband complex tones, because the probability of 
correct central estimation of harmonic numbers is 

essentially unity when the lowest harmonics are present. 

V. PITCH OF MULTICOMPONENT (N>2) 
COMPLEX TONES 

Plomp (1967) has reported pitch judgments by naive 
subjects using novel 12-tone stimuli, created by modi- 
fying standard harmonic stimuli through lowering the 
frequencies of the first m harmonics by 10ø/o while 
increasing the remaining harmonics by 10ø/o: Equation 
18 defines Plomp's test and standard stimuli, with the 
number of tones N = 12. 

N 

Pt•s•(t)= •. cos(1.Srkfot)q- • cos(2.2•rkfot), ß 
k•l k•m+l 

(18) 
N 

P•a(t) = E cos(2•rkf0t). 

By measuring as a function of m and f0 whether the test 
stimulus was judged higher or lower in pitch than the 
standard, Plomp sought to discover the conditions under 
which the lower harmonics determine pitch. Plomp's 
data are abstracted in Fig. 12 with the stimulus condi- 
tions (rn,fo) for which the test stimulus had equal 
probability (50o-/o) of being judged above or below the 
standard. 

Optimum processor theory Eq. 12 predicts the perio- 
dicity pitch for N-tone complexes. Given that the lower 
harmonics including the "fundamental" are all present, 
then with probability approaching unity the harmonic 
numbers are estimated centrally as •/-l+k--k. Substi- 
tution in Eq. 12 and rearranging gives the estimator for 
periodicity pitch 

i0 O9) 
Equation 19 can be solved for the conditions (rn,fo) for 
which the expected pitch of Plomp's test and standard 
stimuli are equal, that is, E[.fo/fo-]--1. By approxi- 
mating aEkf0-1 • al-kfo-I and substituting EExdk-1--- 0.9f0 
for kx<rn and 1.1fo for k>rn, we get 

X. Ek/0]/a ' (20) 

0.3 

02 

0.1 

m N 

TEST TONE =n• cos(I.8w'nfot)+ Y cos(2.2w' nfot) =1 n=m+l 
N 

I•, STANDARD •T• cøs(2•r nføt) 

I 2 5 4 5 6 7 

m, HARMONICS IN LOWER SERIES OF TEST TONE 

Fzo. 12. Fundamental frequency at which the expected pitch of 
Plomp's (1967) test and standard stimuli are equal. Theoretical 
predictions are based upon the average of the variance functions in 
Fig. 7, and optimum processing of only the lowest N stimulus 
components. 

Equation 20 was solved numerically by use of the 
geometric average of the relative variance functions 
for the three subjects shown in Fig. 7. These theoretical 
solutions are given in Fig. 12 for three different values 
of N. The large discrepancy between the data and 
optimum processor predictions for N= 12 implies that 
all 12 components in Plomp's stimuli do not contribute 
their frequency information optimally to periodicity 
pitch. Instead, the closer agreement between data and 
theory for N=6 suggests that only approximately the 
first six harmonics contribute optimally. (The theo- 
retical predictions for N=5 agree more closely with 
Plomp's data for m = 2 and 3, but no solution exists for 
m--4.) On the basis of the earlier theoretical account of 
musical intelligibility data for two-tone stimuli (Sec. 
III, Figs. 8-10), one could expect optimal processing for 
harmonics as high as 8-10; the situation may be 
different, however, when the stimuli comprise more than 
two tones (cf., Plomp, 1964). Final conclusions should 
be reserved until the performance of musically sophisti- 
cated subjects is systematically measured. 

VI. PRECISION OF PERIODICITY PITCH 

What appear to be the most direct measures of the 
variance of periodicity pitch for the principal mode are 
the pitch-matching experiments reported by Ritsma 
(1963). Subjects made 80 repeated pitch matches 
(binaurally at 40 dB SL) between a periodic three-tone 
test stimulus and each fixed standard stimulus by 
adjusting the fundamental of the former. The'test 
stimulus comprised the harmonics 6--8 and the standard 
comprised 9-11, except at the fundamental frequency of 
'600 Hz where the harmonics were 3-5 and 5-7, re- 
spectively. Matches were also made between simple 
tones. Ritsma's data are reproduced in Fig. 13; similar, 
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FIo. 13. Theoretically predicted precision of periodicity pitch 
(principal mode) for the three-tone periodic stimuli used by 
Ritsma (1963) to match (residue) pitches. Ritsma's data are the 
variances of rep'ated adjustments to a standard. Data from 
matching simple tones are also reproduced. 

though unpublished, data are claimed for another 
subject. 

These data are predicted by optimum processor 
theory with the assumptions that the pitch of the 
standard was remembered with great precision relative 
to the measured precision, and that adjustments of test 
stimuli for ambiguous modes were rejected in data 
processing. Equation 15 with m=6 and N=3 (m=3 for 
f0 = 600 Hz) gives the required prediction. The calcu- 
lated precision is given in Fig. 13 for subject NH's 
variance (Fig. 7), as this choice suggested that Ritsma 
switched to lower harmonics at f0=600 Hz to avoid the 
rapidly deteriorating precision of the internal repre- 
sentation of the component frequencies. However, the 
variance functions for the other two subjects '(Fig. 7) 
are also compatible with Ritsma's data. 

Ritsma's data also demonstrate that the precision for 
periodicity pitch is not equal to, nor theoretically ac- 
counted for (with Eq. 15) by the precision with which 
frequency of simple tones can be discriminated. The 
variance functions (Fig. 7) which describe the precision 
with which frequency information is conveyed to the 
central processor of periodicity pitch are much greater 
than those measured for simple tone frequency discrimi- 
nation (Shower and Biddulph, 1931; Harris, 1952; 
Henning, 1966). Therefore, behavioral phenomena and 
aural signal processing associated with simple tones 
cannot fully account for the theoretically derived vari- 
ance functions associated with periodicity pitch. 

VII. PITCH SHIFT FOR INHARMONIC 
COMPLEX TONES 

The outstanding empirical property demonstrated in 
classical studies of periodicity pitch (Hermann, 1912; 
Schouten, 1940b; de Boer, 1956; Schouten, Ritsma, and 
Cardozo, 1962) is that inharmonic complex tones evoke 
a pitch that does not correspond to 'a difference fre- 
quency. Periodicity pitch of a complex tone shifts nearly 

in proportion to a uniform frequency perturbation of its 
constituent frequencies away from an harmonic series. 
A central problem in classical theory has been to 
account for this proportionality factor, which can be 
interpreted in both spectral and temporal theories 
(Schouten, 1940b, p. 244; de Boer, 1956; Schouten, 
Ritsma, and Cardozo, 1962) as being inversely equal to 
the harmonic position of the effective carrier of the 
internal signal. Difficulties in accounting for this pro- 
portionality factor (second effect of de Boer, 1956 and 
Schouten et al., 1962; see also Schroeder, 1966; Fischler, 
1967; Fischler and Cern, 1968; Walliser, 1969) were 
attributed by the present author (Goldstein and Kiang, 
1968, p. 990) to the influence of aurally generated 
combination tones, which had been regarded until 
recently (Goldstein, 1967a) as negligible at low sound 
levels (Zwicker, 1955; Plomp, 1965). 

Smoorenburg (1970) demonstrated empirically with 
measurements of both periodicity pitch and aural com- 
bination tones for the same subjects that indeed aural 
combination tones do modify the pitch shift for inhar- 
monic complex tones. These data are predicted by 
optimum processor theory, and in addition the limited 
resolution of aural frequency analysis is revealed. Given 
a successive harmonic series with the lowest frequency 
nt. f0 and highest frequency nh' f0, then from Eq. 12 the 
estimator that includes the principal mode of the 
unshifted signal is given by 

z0 (21) fO 

Let •xf0 be the uniform frequency shift, so that 
=kfo+afo. For small a f0, if we approximate a[-kfo-] 
•v[-kfo'], then the expected pitch is given by 

The effective harmonic number n• 23 is defined as the 

reciprocal of the proportionality factor in Eq. 22, 

y/ h n,------ • \aE-•o• / / •,,, ;\aE-•o]/. (23) 
A useful bound follows from Eq. 23: n•=k when the 
precision of the kth harmonic predominates, therefore 
nt•n•nh. Approximating the variance function in 
Eq. 23 throughout the low-frequency region as 
vEf• • x/f (cf., Fig. 7), gives 

n,= (24) 

Smoorenburg's (1970) data for the effective harmonic 
number measured with a two-tone stimulus (fx,f•) are 
reproduced in Fig. 14, along with the lowest frequency 
odd-order Ef•--m(f•--f•)-] aural combination tones 
that could be measured with f• fixed in amplitude and 
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frequency (cf., Goldstein, 1970, p. 233). Theoretical 
calculations of effective harmonic numbers 23 were 

made by use of the geometric average of the variance 
functions for the three subjects in Fig. 7. For the 
present calculations, the more transparent Eq. 24 was 
found to offer nearly as precise an account of the data 
and it is useful and consistent to describe the theory in 
its terms. 

When the central processor receives information 
on only the stimulus frequencies [fx=nfoq-Afo and 
f2= (nd-1)foq-Afo], then the effective harmonic num- 
ber is the average of the stimulus harmonic numbers, 
n,=nd-{. Figure 14 shows that the data are not pre- 
dicted by this situation. If, instead, we allow for the 
presence of stimulus-like aural combination tones, which 
add lower harmonics to the stimulus, we can find the 
lowest harmonic number nt in the effective stimulus 
which fits the n, data. Following this calculation 
scheme, the predicted combination tones agree well 
with Smoorenburg's data only when neither stimulus 
harmonic exceeds 10 (i.e., the six lowest frequency 
entries in Fig. 14). To account for the remaining data it 
is necessary to add the rule that only constituent 
frequencies that are more than 10% remote from each 
other contribute to the central processor, i.e., limited 
frequency resolution. 

Several points in this analysis should be noted. Both 
frequency resolution and the presence or absence of 
frequency signals were successfully idealized here as 
all-or-none. This supports the earlier theoretical con- 
dusion from musical intelligibility data (Sec. III) that 
limited aural frequency resolution does not appear to 
cause a gradual deterioration of frequency information, 
for increasing harmonic number, at the input to the 
central pitch processor. Second, the idealization of the 
amplitudes of the constituent stimulus tones as all-or- 
none is confirmed by the equal roles played by the 
different aural combination tones, despite their mani- 
festly different amplitudes, all below those in the two- 
tone primary stimulus. Finally, van den Brink's (1970) 
unique evidence that the pitch of inharmonic complex 
tones is nonlinearly related to the uniform frequency 
shift, though qualitatively consistent with the nonlinear 
nature of the estimator (5, 21), is not remotely con- 
firmed quantitatively by theoretical calculations. Note, 
that the nonlinear estimator for the low-frequency 
region where a•f-• c• "-V'f is given by Eq. 25. For N-2, 
the partitioning of sasnple space is given by Eq. 6. 

2 
t-• td-k- 1/' 

Instead, a large contribution to nonllnearity in the pitch 
shift phenomenon often appears to be caused by changes 
in the number of combination tones present at different 
frequency shifts. For positive shifts (A f0> O) the rela- 
tive frequency spacing between stimulus tones de- 
creases; since narrower spacing creates the possibility of 
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F]o. 14. Reduction by aural combination tones and limited 
resolution of the effective harmonic number, n,, in pitch perception 
with inharmonic two-tone signals. Smoorenburg's (1970) data on 
effective harmonic number are fitted to theory on the assumption 
of optimum processing of all effective stimulus tones. The lowest 
frequency odd-order aural combination tone is predicted from the 
theoretical n, and the assumption that only components with 
spectral sparings exceeding 10% contribute to periodidW pitch. 
Also shown is the effective harmonic number if the stimulus 
frequendes alone comprised the effective stimulus. 

more combination tones, the effective harmonic number 
for positive shifts is often smaller than for negative 
shifts. 

VIII. THE CONFOUNDING ROLE OF AURAL 
COMBINATION TONES 

Two empirical characteristics of periodicity pitch 
have served as primary evidence in classical theory for 
mediation of pitch of complex tones directly by temporal 
intervals measured in the cochlear output (Schouten, 
1940a; Licklider, 1955). First, periodic complex tones 
comprising harmonics too high to be aurally analyzable 
as simple tones can evoke a low periodicity pitch 
corresponding to the fundamental frequency (Seebeck, 
1841, 1843; Schouten, 1940a). This was interpreted to 
imply that the failure of aural spectrum analysis is 
essential for permitting the stimulus harmonics to beat 
and define their common temporal period. Second, 
phase effects upon pitch have been reported for stimuli 
with more than two harmonics higher than approxi- 
mately the fifth (Licklider, 1955; de Boer, 1955; 
Ritsma and Engel, 1964). This was interpreted as 
reflecting the influence of phase upon the complex 
waveform responsible for mediating pitch. 
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De Boer (1956) performed systematic studies of the 
pitch of inhaxmonic complex tones and found that 
periodidty pitch exists as well for sounds comprising 
only low harmonics (spacings greater than approxi- 
mately 15%) for which behavioral frequency analysis is 
operative and phase effects are negligible. Earlier, 
Schouten (1940b) had proposed that the pitch of 
inharmonic complex tones could be described as corre- 
sponding to the fundamental frequency of an harmonic 
series which closely matches those stimulus frequencies 
that excite the pitch extractor; the actual form of the 
mediating signals, however, was presumed to be tem- 
poral. De Boer (1956) synthesized these ideas into a 
composite pitch mediation theory. Complex tones with 
wide spectral spacings are tonotopically analyzed and 
periodicity pitch is assigned on the basis of an harmonic 
series that best matches the a•zalyzed spectrum; de 
Boer's least-squares nonstochastic approach anticipates 
the present more complete theory (Sec. IX). Complex 
tones with spectral spacings narrower than the band- 
width of the cochlear filters provide residual complex 
waveforms at the cochlear outputs and pitch is assigned 
on the basis of temporal intervals defined by the fine 
structure in these waveforms; this view is now untenable 
(Houtsma and Goldstein, 1972; Goldstein, 1972). 

The temporal fine-structure mechanism of de Boer 
was accepted by Schouten, Ritsma and Cardozo (1962) 
as most consistent with periodicity pitch phenomena, 
including the aforementioned and the multiple-valued 
(ambiguous) nature of periodicity pitch for both har- 
monic and inharmonic complex tones. The absence of 
phase effects and the presence of behavioral resolution 
for complex tones with wide spectral spacing does not 
logically preclude co-existing weak spectral interactions 
that create residual complex waveforms in the cochlear 
output. For example, it is known (Mathes and Miller, 
1947; Ritsma and Engel, 1964; Goldstein, 1965) that 
perceptibility of phase changes can be greater with 
stimuli comprising three tones than with two tones. A 
property consistent with neither of Schouten and de 
Boer's formulations was the frequent theoretical under- 
estimation of pitch shifts for inhannonic complex tones, 
i.e., the second effect (de Boer, 1956; Schouten, Ritsma, 
and Cardozo, 1962), which often could not be accounted 
for regardless of the filtering or weighting assumed in 
aural signal processing (Goldstein and Kiang, 1968, p. 
990; Smoorenburg, 1970). This discrepancy became 
creasingly greater as the stimulus was chosen to com- 
prise higher harmonics (see Sec. VII). 

Recognizing that wideband inharmonic stimuli pro- 
duce different temporal periodicities at different charac- 
teristic frequencies of the aural spectrum analyzer, 
Ritsma (1967a) sought to detersnine which spectral 
region is dominant in exciting the pitch extractor. He 
employed an experimental paradigm similar to Plomp's 
(1967), (see Sec. V), and concluded that the dominant 
region is contained within the lowest harmonics. More- 

over, from additional experiments in which the lower 
series contained only two successive harmonics, Ritsma 
(see Sec. IV) concluded that the spectral region covering 
the harmonics 3-5 dominates pitch perception for 
fundamentals in the range 100-400 Hz. Ritsma's results 
constituted a major puzzle for the te•nporal waveform 
formulation, because it had been assumed that the 
existence of behavioral frequency analysis and weak 
phase effects for low harmonic stimuli implied weak 
temporal interactions and poorly defined periodicity 
pitch. 

New possibilities for interpreting data on periodicity 
pitch arose when it was discovered (Goldstein, 1967a) 
that significant aural combination tones existed at lower 
sound levels than previously expected. Stimuli con- 
taining only upper harmonics are augmented with a 
series of stimulus-like lower harmonics by an essential 
nonlinearity in peripheral signal processing. The second 
effect of the residue was no longer a puzzle (Goldstein 
and Kiang, 1968; Ritsma, 1970; Smoorenburg, 1970); 
all available data on the pitch of inharmonic complex 
tones (de Boer, 1956; Schouten, Ritsma and Cardozo, 
1962; Sutton and Williams, 1970; Houtsma, 1971) could 
be fully accounted for with aural combination tones 
(where relevant). It has become increasingly evident 
that complex tones which would otherwise be musically 
ineffectual because of dense spectral spacing can be 
augmented by aural combination tones that are musi- 
cally effective as well as behaviorally resolvable (Gold- 
stein, 1967a, p. 684; S•noorenburg, 1970, see Sec. VII of 
this paper; Houtsma and Goldstein, 1972). 

Aural combination tones are also responsible for at 
least some phase effects in periodicity pitch, as it has 
been shown (Goldstein, 1970) that the Very presence of 
some combination tones is phase-dependent for stimuli 
comprising three tones. Data bv Ritsma and Engel 
(1964) on pitch matchings for periodic three-tone, 
quasi-FM stimuli include examples where the funda- 
mental frequency of the periodic stimulus does not 
correspond to periodicity piti:h. This suggests an 
effective stimulus comprising some nonsuccessive har- 
monics, which is a condition that can be created by 
aural combination tones. Circumventing phase effects of 
peripheral origin, Houtsma (Houtsma and Goldstein, 
1971) measured the discriminability between AM and 
quasi-FM (Mathes and Miller, 1947; Goldstein, 1967b) 
when these sounds are presented normally as well as 
when the center tone and side tones enter opposite ears. 
The latter dichotic presentation did not destroy perio- 
dicity pitch, but it did remove phase effects. 

Were it not for the confounding role of aural combi- 
nation tones it is very likely that periodicity pitch would 
have been attributed earlier exclusively to harmonics of 
low order. Periodicity pitch theory, in all likelihood, 
would then have developed much sooner with a clear, 
recognition that the auditory system organizes stimuli 
tonotopically and then proceeds hierarchically to read 
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across the tonotopic dimension. (Examples of recent 
theoretical formulations of periodicity pitch are those by 
Walliser, 1969; Terhardt, 1972; Wightman, 1972.) 

IX. EMPIRICAL AND THEORETICAL 
ANTECEDENTS 

A. Empirical Bases for Optimum 
Processor Constraints 

An optimum processor theory is meaningful when it 
is structured by an appropriate set of constraints. These 
constraints may be inferred directly from empirical 
phenomena and they may be selected to yield the 
desired fit between data and theory. Optimum processor 
theory follows well-defined logical rules, while the 
discovery of appropriate constraints almost never does. 

The constraints introduced in Sec. I are (i) the 
optimum processor receives information on only aurally 
resolved simple tones, (ii) phase is irrelevant, (iii) 
amplitude is irrelevant (within limits), (iv) the pro- 
cessor presumes periodic stimuli comprising successive 
harmonics, (v) the stimulus harmonics presumed must 
be measured by the processor for each stimulus presen- 
tation, and (vi) the pr6cessor is provided with inde- 
pendent stochastic information on the frequency of each 
resolved component. 

The empirical bases for these inferred, but not 
logically proved, constraints are provided by the studies 
of many investigators over a long period of time. These 
studies have been referenced throughout this paper; it 
is useful to review them briefly. 

The first two constraints concerning aural resolution 
and irrelevance of phase were anticipated by Helmholtz 
(1863). In his experimental investigations he found that 
musical properties of periodic complex tones are pri- 
marily determined by behaviorally resolvable, low-order 
harmonics, that is, the first 6-8. He was the first to 
demonstrate the absence of significant phase effects for 
low-order harmonics. But he was wrong in concluding 
that the fundamental component mediates musical 
pitch. De Boer (1956) demonstrated the existence of 
periodicity pitch for low-order harmonics. De Boer 
(1956) and Schouten, Ritsma, and Cardozo (1962) dis- 
covered the second-effect phenomenon in experiments 
on pitch shift for inharmonic complex tones (see Sec. 
VII), in which the effective harmonic number saturated 
at the relatively low harmonic number of approximately 
10. De Boer proposed that this effect could be ac- 
counted for by assuming the auditory system empha- 
sizes lower frequency stimulus components. Schouten 
et al. (1962), presented data which could not be so 
simply accommodated and tacitly suggested the exist- 
ence of a basic enigma. The present author (Goldstein, 
1967a, 1.970) demonstrated the existence of odd-order 
aural combination tones below the stimulus frequencies 
at previously unsuspected low sound levels. Combi- 
nation tones were found to affect musical quality 

greatly and generate significant phase effects when they 
were. generated by complex tones with spacings near the 
limits of behavioral resolution. Goldstein and Kiang 
(1968) proposed on physical and psychophysical grounds 
that the second effect can be accounted for by peZ 
ripherally generated odd-order combination tones. 
Smoorenburg (1970) demonstrated empirically the in- 
fluence of aural •combination tones in pitch shift 
experiments. Because of the presence of aural combi- 
nation tones, one could reasonably hypothesize that 
only aurally resolvable simple tones mediate pitch. This 
hypothesis was fully consistent with the findings of 
Ritsma (1967a,b) and Plomp (1967) that relatively 
low-order harmonics are most effective in mediating 
periodicity pitch. Finally, the musical intelligibility 
experiments of Houtsma and Goldstein (1971, 1972) 
with monatic and dichotic stimuli demonstrated con- 

clusively the primary role of low-order harmonics in 
periodicity pitch and the secondary roles of peripheral 
interaction phenomena including temporal beats, aural 
combination tones, and significant phase effects. 

The third constraint concerning the minor roles of 
amplitude of spectral components can be inferred from 
the natural phenomenon that musical sounds with quite 
different distributions of spectral amplitude convey the 
same pitch. Perhaps it was this invariance that led 
Helmholtz to insist that pitch of periodic complex tones 
is mediated by the fundamental component. Controlled 
experiments on the effect of amplitude distribution were 
reported by Plomp (1967) who found similar pitch for 
uniform and 1/f spectral amplitude distributions. 
Ritsma (1967a) found that the outcome of his domi- 
nance experiments was quite insensitive to the rela- 
tive amplitudes between his two competing sounds. 
Smoorenburg's (1970) data on the effects of aural 
combination tones on pitch demonstrate that pre- 
sumably low-amplitude tones have great influence on 
pitch. With phase and amplitude (within limits) 
ignored, the central processor of pitch need only collect 
information on the frequencies of aurally resolved 
stimulus tones. 

The fourth constraint, that the pit'ch processor pre- 
sumes the stimulus is periodic and comprises successive 
harmonics, was an inference first made by Schouten 
(1940b) to describe the fact that pitch of inharmonic 
complex tones does not correspond to a difference fre- 
quency (f2--f•). De Boer (1956) gave the first empirical 
demonstration that periodicity pitch for periodic sounds 
comprising only upper odd harmonics differs from the 
true fundamental frequency; this would be expected if 
the auditory system presumed stimuli comprising suc- 
cessive harmonics. 

The fifth constraint, that the pitch processor must 
decide solely on the basis of each stimulus presentation 
which stimulus harmonics to presume, may be inferred 
from the natural phenomenon that pitch in music and 
speech appears to be appreciated without prior informa- 
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tion of harmonic structure of specific stimuli. Experi- 
mental evidence was given by Schouten et al. (1962), 
who demonstrated the existence of ambiguities in 
periodicity pitch heard in repeated presentations of 
periodic stimuli comprising successive harmonics; ambi- 
guities should not occur according to optimum processor 
theory if the processor could accumulate information on 
harmonic numbers from prior presentations. Proof that 
withholding information on harmonic structure need 
not interfere with reliable perception of periodicity 
pitch was given in experiments by Cross and Lane 
(1963) and Houtsma and Goldstein (1972). 

The sixth and final constraint is that variability in 
pitch perception is accounted for by independent 
stochastic variability in central processor information 
on each stimulus frequency. This choice is based on the 
physiologically motivated supposition that frequency 
information of aurally resolved simple tones is conveyed 
to the central pitch processor by independent noisy 
channels. Furthermore, optimum processor theory re- 
quires noisy frequency information to account for 
ambiguities. The characterization of this randomness by 
static, stochastically independent Gaussian distribu- 
tions is a simple and reasonable choice. The fact that the 
variance parameters of the Gaussian distributions are 
dependent only upon the frequency represented is a 
major outcome, and not a built-in assumption of the 
analysis of musical intelligibility data. In the final 
analysis, this assembly of constraints and their sup- 
porting basis is interesting primarily because the theory 
that was logically constructed from the constraints 
unifies a large body of data on pitch of complex tones. 

B. Relation to Earlier Theory of Periodicity Pitch 

Several theories of periodicity pitch have been pro- 
posed (Schouten, 1940a, b; de Boer, 1956; Licklider, 
1956; Walliser, 1969; Terhardt, 1972a, b; Wightman, 
1972). Of these, the "harmonic spectrum matching" 
suggested by Schouten (1940b) and developed by de 
Boer (1956) as least-squares matching is the most 
relevant for the theory given here. We demonstrate this 
relationship heuristically by further developing de 
Boer's least-squares formulation. 

De Boer (1956) demonstrated that periodicity pitch 
exists for inharmonic complex tones comprising widely 
spaced as well as narrowly spaced simple tones. He 
proposed that for the stimuli with wide spectral spacing 
the auditory system actually operates in the frequency 
domain to match a harmonic spectral pattern to the 
stimulus spectrum. He suggested a least-squares formu- 
lation as a way of desc[ibing this matching. Equation 26 
gives the square error as a function of the stimulus 
frequencies, matched frequencies, •f0, (•+l)fo, ...,fk, and the 

82= E a*[.f•-(g+k-1)fo] 2. (26) 
k=l 

Assuming the weights, a•, are constants, de Boer gives 
the optimum f0 (our notation), 

N N 

f0 = • a•(•+k-1)f•/E a•(•+k-1) 2. (27) 

We can bridge the gap between de Boer's expressions 
and those derived from maximum-likelihood estimation 
(mle) by postulating that the pattern matcher has 
available only samples from independent Gaussian 
representations of the stimulus frequencies, as specified 
earlier in Eq. 1. Then 

and 

N 

s2= 22 (28) 

iv iv 

fo = E a•(•+k- 1)x•/E a•(•+k- 1) 2. (29) 
k=l 

Next, we require that the constants, a•, be chosen to 
minimize the expected square error in estimating the 
fundamental. We already know from Sec. II that 
Eq. 29 has a multimodal probability distribution, so it 
is not trivial to solve this problem. Let us generally 
adopt the procedure that applies when the stimulus 
comprises successive harmonics beginning with a suffi- 
ciently low order so that the probability of estimating 
the correct harmonic numbers approaches unity. Then 
we can treat • as a constant in evaluating the expected 
square error of the fundamental estimate, 

$0 2 = E[ (f o-- E[f o])2]. (30) 

From Eqs. 1, 29, and the independence of the frequency 
samples we get 

h r iV 

$02= E [a•(•+k-1)o'•]2/EE a,•(•.+k-1)2] 2. (31) 
k=l k•l 

Equation 31 can be minimized for each a•; the solution 
within a common arbitrary constant is 

ak = a• -2. (32) 

Next, we reason that the system has no information on 
the variances of the internal representations of the 
actual stimulus frequencies, but it can estimate these 
variances by using the variances it can associate with 
the individual frequencies in the matched spectrum. 
Thus 

a•-•= a•= *E(a+k- 1)f0]. (33) 

Hence Eqs. 28 and 29 become 

$2= y•. Ex•, - (gq-k- 1)fo"[2/&, 2, (34) 
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and 

(35) 

IO 

T 

Clearly Eq. 34 is the statistic that is minimized by 
maximum-likelihood estimation (mle) and Eq. 35 is the >: o 1.0 
linear estimator given by Eq. 12. Thus all treatments of 
data described in this paper could have been identically 
described in terms of this least-squares pattern match- ff o.3o 
ing. Important conceptual distinctions, of course, do 
exist between mle and least-squares matching. The mle 

• O.lO approach frees one from unproved, though possibly 
true, presumptions on physiological mechanisms that 
favor place over time representations of resolved cam- z 
ponents. This is so because the square error 34 is derived ,." 0.03 
with role froxn basic probabilistic considerations and 
need not appeal to a spatial pattern interpretation, as in o.o• 
the least-squares matching approach. Second, the mini- 
mum squared error derivation given here is a nonrigor- 
ous one that benefited with hindsight from the known 
mle solution. Without the more basic logic of role is it 
doubtful that we would have pursued the difficult 
mathematical problems encountered (see Sec. II). 
Finally, the optimality of the mle solution could not be 
appreciated from a least-squares matching approach. 

X. FURTHER WORK 

Three categories of further experimental and theo- 
retical work can be distinguished: work within the 
theoretical paradigm presented in this paper, attempts 
to remove the limitations of present theory, and 
identification of the physiological mechanisms that 
mediate periodici W pitch. 

Many issues within the present theoretical paradigm 
have been raised throughout this paper; some additional 
issues follow. Experimental research is needed on the 
options available to the central processor for choosing 
information from either one or both ears. Theoretical 

predictions of existence regions for musically interesting 
stimuli (Ritsma, 1962) require study. For example, 
Fig. 15 defines existence regions for stimuli comprising 
two successive harmonics on the bases of precision for 
periodicity pitch (a0/f0) and the probability of nonam- 
biguous responses (Pr[//=n]). For other stimuli, such 
as lowpass filtered unipolar pulse trains and simple 
tones, precision alone (Eq. 15) would be the primary 
determinant of the existence region. Finally, periodicity 
pitch for periodic stimuli that do not contain energy at 
successive harmonics can have a weak or nonexistent 

mode at the fundamental frequency; experimental and 
ß theoretical investigations of all modes are needed 

(Flanagan and Guttman, 1962; Ritsma, 1967b; Secs. 
VII and VIII of this paper). For example, a seemingly 
paradoxical theoretical prediction obtains when the 
fundamental tone is added to a periodic complex tone 
comprising successive harmonics no lower than the 
third. When aural combination tones of odd and even 

//j// o.q, "o"o - o.o, 0.03 
0.01 0.03 0.10 0.50 1.00 3.00 I0.0 

FREQUENCY OF LOWER TONE.nfo(kHz) 

FIG. 15. Theoretically predicted existence region for periodidLy 
pitch of an harmonic two-tone signal (aural combination tones not 
included), calculated from the geometric average of the variance 
functions in Fig. 7. Boundaries are set by choosing an acceptable 
precision (a,o/J'o) and probability of nonambiguous responses 
(PrEP=n]). 

orders (Goldstein, 1967a; Hall, 1972) do not fill the 
spectral gap between fundamental and upper har- 
monics, periodicity pitch differing from the fundamental 
should be heard--a condition clearly to be avoided in 
musical practice. 

The most important limitation of the present theory 
is that it is formally restricted to complex tones (stimuli 
comprising line spectra, with each line of width less than 
the theoretically derived variance in Fig. 7), and it 
cannot treat transient and dynamic properties of 
stimuli. Thus, the extensive literature on pitch of click 
pairs and related stimuli which have continuous spectra 
(Bilsen, 1968; Ritsma, 1970; Small, 1970) cannot be 
treated in the present formulation. Repeating the click 
pairs at regular but infrequent intervals creates a line 
spectrum, but the phenomenon is still dependent upon 
dynamic properties of the stimulus. In Fourier terms, 
the central processor could determine pitch in the latter 
case by interrelating signals representing clusters of 
spectral lines that were grouped separately within the 
limits of aural resolution. Another view of this inability 
of present theory to treat the dynamic case is gained by 
considering any of the complex tone stimuli within the 
scope of present theory and multiplying it by a simple 
tone with frequency (A) small relative to the original 
spectral spacing. Each spectral line of the original 
stimulus will be split into two lines separated by 2•. 
Periodicit)' pitch should not disappear; instead, de- 
pending upon A the sound will fluctuate in loudness or 
probably suffer a deterioration in the precision of pitch. 
Finally, questions on the role of learning (Licklider, 
1956; Thurlow, 1963; Whitfield, 1970) in organizing the 
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properties of the central processor of periodicity pitch 
are moot in the present theory, although the existence of 
a consolidating logic for periodicity pitch phenomena 
weighs against a very plastic orgaxdzation through 
learning. The relatively simple feedback procedure used 
successfully by Cross and Lane (1963) to train human 
subjects to respond consistently to periodicity pitch also 
suggests a minor role for learning. Their paradigm 
appears to offer a practical approach to nonhuman 
psychophysics of periodicity pitch, whereby learning 
can be more carefully controlled and studied. 

No claims on physiological mechanism are made by 
the present theor)'; rather it is claimed that physio- 
logical details are outside the theory's scope. However, 
the present theory describes a unifying logic that 
underlies the behavioral phenomena of periodicity pitch 
and thereby defines a problem for physiology to solve. 

(1) Periodicity pitch is not accountable in terms of 
peripheral events localized within a small range of 
characteristic frequencies; instead, the pitch processor 
synthesizes information from across central projections 
of the internal frequency maps from both ears. 

(2) The decomposition by aural spectrum analysis of 
complex tone stimuli into signals representing the 
constituent tones (or separable groups of tones) is a 
necessary but not sufficient step in aural creation of 
periodicity pitch. When aural frequency analysis fails 
because of its limited resolution, periodicity pitch ceases 
to exist. More often, however, because of ambiguities 
periodicity pitch ceases as a consistent response well 
before frequency resolution imposes its limit. 

(3) A noisy representation of only the frequencies of 
the aurally resolved components is communicated to the 
central pitch processor. This noisiness is quantified by a 
variance of independent Gaussian distributions which 
depends upon the frequency represented and not upon 
the presence or proximity of other resolved frequencies. 
This major constraint leaves to physiology the question 
of whether the tonotopically organized frequency signals 
are coded by their place or temporal course. It would be 
premature to regard the necessity for tonotopic organi- 
zation as proof of the redundancy of temporal informa- 
tion in view of the uncertain problems and benefits 
provided by the limited dynamic range of neural firing 
rate and by lateral inhibitor)- interactions (Whitfield, 
1967; Kiang, 1968; Hind el al., 1971; Sachs, 1971; Suga, 
1971; Tamar, 1972). 

{4) The optimum processing formulation for the 
central pitch mechanism states the logic relating input 
and output while overriding all physiological details. 
The constraint that this mechanism presupposes stimuli 
comprising successive harmonics is a major clue for 
physiology. Such processing can be described in terms of 
operations by spatial filters upon tonotopically organ- 
ized patterns which yield place responses (Cornsweet, 
1970). But, apart from the question of the roles of time 
and place information in these patterns, what justifica- 

tion is there for assuming that periodicity pitch must be 
physically found in'one place ? 
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APPENDIX A: PROBABILITY OF SAlVIPLE 
IN Mth SECTOR 

Equation 9 is derived in this appendix. Define the 
lines bounding the ruth sector by x•=S•tx• and 
x2=S,•2x•, where S,•t>Sm2. The probability that a 
sample point (x•,x•) falls in the ruth sector is formulated 
in Eq. A1. For mathematical convenience, the integral 
A1 includes both positive and negative samples, samples 
outside the first quadrant, x•> 0, x•> 0, make a totally 
negligible contribution to the integral for parameters of 
interest, and in addition such samples would have no 
physical significance. 

Prig=m-I= [•' dx, fs,•,•., dx__• 

2a• • 2a• 

Normali• the variables in Eq. A1 with y•= 
and y•= (x•--f,)/a•, to get 

wh•r• 

•d 

Equation A2 can be evaluated in pol• coordinates in 
terns of cumulative joint probabilities for sample points 
on •d below the line l=y•= [S•(a•y•+f•)--fx]/a•, 
given by Eq. A3. Equation A2 is the difference betw•n 
two such cumulative probabilities. Figure A-1 defin• 
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the pola? coordinate symbols. 

f' f' I = dy• 

=jo aR • e•-RV2. (A3) 
First we evMuate Eq. A3 for a line above the orig• 
(see Fig. A-l). 

•(•)= 2•, o( •5 
= 2 (•- arc cos[R•dR]), R • R•, (•4) 

for 

S•d•- i• • o. 

Substitute Eq. A4 in A3 and designate the integral 
• I•. 

Ia = dR. R. exp-- R¾2 

-- dR-- arc cosER,•dR']. exp-- R¾2. 

The first integral on the right is unity; the second 
-integral is treated by parts. 

Ia = 1-{-- arc cos[R•dR ]. exp--R•/2 [ •n• 

1 f:m dR R• . 
Substitution of u 2-- R •-- R• • in the integral above gives 
a standard form tabulated in Abramowitz and Stegun 
(1968), yielding 

I., = 0 
where 

- f• (as) erf[x]• 2•r-t du exp--u •. 

With Eq. A5, the integral A3 for a line below the origin 
follows by symmetry, 

In= 1--Ia= (1-erf[R•dv•])/2. (A6) 

The probabilities Pr[•=m] given in Eq. 9 follow 
immediately from Eqs. A5 and A6 after identifying the 
sector m, as lying above, containing, or lying below the 
centroid of the joint probability function (i.e., the 
origin in Fig. A-I). 

The integrals A5 and A6 are functions only of the 
distance from the origin to the boundary line l, as 
shown in Fig. A-1. This distance is readily found by 
noting that the sides of the similar right triangles (aob) 
and (oxo) are related in accord with Eq. A7, 

R,•/ oa= ob / ( oa :-{-ob • ) t. 

FIo. A-I. Evaluation of integrals below line I. 

oa and ob are equal to the intercepts between the line l 
and the normalized axes; R,• as given in Eq. 9 follows 
upon substitution. 

APPENDIX B: EXPECTED VALUES OF SAMPLES 
IN Mth SECTOR 

Equation 10 is derived in this appendix. Define 
the normalized variables y•=(x•-fO/•x and 
= (x•-f•)/a•.. The expectations of these normalized 
variables, given that the sample point lies in the ruth 
sector, are formulated in Eqs. B1 and B2, 

xx-fi 1 

X--exp 2• 2 
where 

t- a• , - Pr[-•=ra-[ 

where It and la are given in Eq. A2. These integrals can 
be evaluated directly in Cartesian coordinates, by the 
method of 'completing the square. 

?,,•. pr[• = m]= •_• L dy: exp [ 
(A7) For each limit above, the argument of the exponential. 
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function can be put into the form below. 

(- «[(o-do-,s,,,,,)% • ] 

-«Eft- I, lS.k•lE (•,l•,&O'+ 

By use of the definition of R,•e given in Eq. 9, the 
expression for •x,, given in Eq. 10 follows directly. 
Comparison of Eqs. B1 and B2 reveals that the expres- 
sion for F2• is obtained from •x. with the replacements 
S,,x *-• 1/S,a, ft •-• f2, and •x 

APPENDIX C: VARIANCE OF FUNDAMENTAL 
ESTIMATE 

This appendix describes an exact formulation for the 
variance of the linear, two-dimensional estimate of the 
fundamental for samples in the ruth sector. With the 
definitions given in Eq. 8, the desired variance is given 
by 

•'=•Uo21•=•] - (]o•)'. (ci) 

The first moment of the estimate in the ruth sector, 
is given by Eqs. 10 and 11. Equation C1 can be ex- 
pressed conveniently in terms of the normalized vari- 
ables yx= (x•--fO/½, and y•= (x2-f•)/a•, as given by 

-- (Aa,F,•.+Ba2?2.•) •, (C2) 
where 

fo=Axx+Bx2 and 

Evaluation of Eq. C2 requires the formulation 
of the expectations E[yx2l•/= m], E[y221•= m] and 
E[yxy2lg= m-I; the mathematical procedures used are 
similar to those in Appendices A and B, respectively. 
Consider first the former expectation given by Eq. C3, 

(C3) 

where y•.2 represents yx or y2, lx and 12 as in Eq. A2. 
Equation C3 can be evaluated in polar coordinates, as 

in Appendix A. The integrals needed for y• and y2 are 
given by I• and I• Eq. C4. Figure A-I (Appendix A) 
defines the polar coordinate symbols. 

Ix= fff dR 
I•= R 

fo • RdO R 2 cos20 exp-R2/2 
• 2•r 

f ff RdO R 2 sin20 exp-- R2/2. 

(C4) 

First we evaluate Ix Eq. C4 for a line above the origin 

(see Fig. A-l). 

02-- 0• = 2% 
= 2 (•r-- arc cosER,•dR]), 

02= st-- arc cos[-R•k/R] 
-- arc 

for 

O ( R x< R,•n, 
R/> R,•t, 

R •> R•e 

(C5) 

From Eq. A7, 

R•,•/•= [(•,/atS•n)'+ 11% (C6) 

Integrating It with respect to 0 yields Eq. C7, cf. C5, 

It.•=- dR'R a exp--R2/2 
2 

q-)4r f;.•,dR[02--Ol"[-} sin202--« sin201-]R a 
Xexp--R2/2. (C7) 

Substituting Eqs. C5 and C6 and rearranging yields C7', 

Ira= dR.R a exp--R2/2 

(•xS,.d•O 2-1 l 
-- R a exp--R2/2. (C7') X (*xS•,*/•2)2+ 1 } 

The first integral on the right is trivial after we substi- 
tute u= R:/2, which yields unity. The integral involving 
arc cos is solved via integration by parts, similarly as in 
Appendix A. The integral involving the radical is trivial 
after substitution of r := R 2-- R,,• 2. Altogether, Eq. C7 is 
given by C8, 

R,• exp-- R.,.?/2 
I,A= }(lq-erf[R,•/q•]) . (C8) 

Using Eq. C8, we evaluate It Eq. C4 for a line below 
the origin by exploiting symmetry, 

I•a-- 1--Ira (see Eq. C8). (C9) 

By identical methods, 12 Eq. C4 is solved for lines 
above and bdow' the origin, yielding 12• and I2r, 
respectively, Eq. C10, 

I2a= « ( l +eff[-R,•dV2-1 ) 

I2•= 1--I2a. 

R,• exp--R,,•2/2 

(2•)• ($.•,,x/•2)2+1 ' (clo) 

Defining as a principal sector, n, one in which (ft,f•) 
lies or borders, we use Eqs. C8-C10 to develop the 
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desired formulae C 11, 

-,-[ 
X { (20 PrE = 

x{(20 

ED½ I•= re>m] 

L (.,/.tS•t)'+l (.,/.,S.,)'+1 J 

x { (20 erB = }-'. 

The probabilities Pr[½= m] and the distances R• are 
given in Eq. 9. The conditional expectations for y• are 
given by Eq. 61t after making the replacement 

The derivation of the expectation 
follows that of Appendix B so closely that only the 
result need be given here Eq. C12. The sign function 
introduced in Eq. C12 can be used to express Eqs. 9 and 
C11 more compactly for computer pro.mining. 

{ Yd' 
Yd' 

X{(20 (C2) 

Substituting the expectations Cll and C12 in C2 gives 
us the desired expression for the variance 
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