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Abstract

Melodies can be recognized in music, regardless of the instrument on which they
are played. This is true even when the musical sounds have no acoustical energy at
the fundamental frequency. This phenomenon has been investigated qualitatively and
quantitatively through a series of experiments in which subjects were asked to identify
melodies and simple musical intervals. Each musical note was played by a complex
tone comprising successive upper harmonics with randomly chosen lower harmonic
number. Melodies and intervals played with such sounds consisting of only two partials
of low harmonic number could be identified perfectly both when the complex tones were
presented monotically (both partials to one ear) and when the partials were distributed
dichotically (one partial to each ear). Control experiments showed that neither differ-
ence tone nor transformations based on frequency difference per se explain these phe-
nomena. Percent correct identification decreased both with increasing fundamental
frequency and average harmonic number. Performance is essentially the same for
monotic and dichotic stimulus paradigms, except for differences which were shown to
be accounted for by aural combination tones. Moreover, identification performance is
essentially random when the harmonic numbers of the stimulus tones or audible aural
combination tones are sufficiently high (greater than approximately 10) so that they
cannot be resolved behaviorally in monaural experiments. These findings suggest that
sensations of "musical pitch of the fundamental" in complex tones are mediated cen-
trally by neural signals derived from those stimulus partials that are tonotopically
resolved, rather than being mediated by neural transformations of those upper partials
which the peripheral auditory system fails to resolve.

Similar experiments with complex tones containing up to six successive partials
yielded results that are basically similar to those with the two dichotic partials. Thus
the basic properties of the central processor of musical pitch can be studied under
stimulus conditions that are free from the confounding and irrelevant effects of coch-
lear nonlinear interactions among partials.

Phase effects were studied for monotic and dichotic tone complexes and the results
suggest that the central pitch processor is insensitive to the relative phases of its
separate inputs. Some experiments were performed on melody perception using inhar-
monic two-tone stimuli and the results are consistent with earlier studies of musical
pitch.

A preliminary attempt was made to reduce the experimental data to a single param-
eter of a statistical decision model. Comparisons were made between the interval iden-
tification data and optimum processor predictions based on frequency discrimination
data for simple tones.
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I. INTRODUCTION

The human ear has been the object of numerous theoretical and experimental studies

for centuries, and almost invariably each conceptual or experimental advance has put

new obstacles in the way of understanding what was once thought to be a simple sys-

tem. A survey of psychoacoustical literature of the past hundred years shows clearly

how extremely sophisticated the auditory system is, and how new experimental

facts appear to render the development of a complete theory of hearing more

remote.

In this report we are occupied with just one of the many amazing operations that the

auditory system can perform. Through many ages man has developed an activity to please

himself through his sense of hearing, namely music. The human ear has the remark-

able ability to track several melodies (see Appendix III for definitions) simultaneously

when listening to a sequence of orchestral sounds. This ability was a basic essential

of all Western music at least up to the Baroque period. A simple case of this "polyphonic

music" is monophonic music, which is music comprising just one melody. A considerable

part of the Western musical tradition, and almost all of the Oriental tradition, consists in

this kind of music. When we consider the conditions under which the human ear can

track a simple melody, we realize that the ear is performing anything but a simple oper-

ation. Over the years an internationally agreed upon note scale has been developed

which characterizes musical sounds solely by their fundamental frequencies. A mel-

ody is a sequence of such notes. When such a note sequence is transformed into a sound

sequence according to the rule just mentioned, the result is a sensation of the original

melody; that is, the original sequence of notes can be retrieved from a listener' s sen-

sation in one form or other. The amazing thing, however, is that the melody sensa-

tion seems to be invariant over a large class of note-to-sound transformations.

Melodies can be played on instruments that have quite different frequency transfer

characteristics, and still be recognized. Some instruments produce sounds with a

rich spectrum comprising the fundamental and many partials (stringed instruments),

Some have little else than the bare fundamental (flute in high register), others gen-

erate spectra having a strong formant" region with the result that the lower notes

usually lack the lower partials, including the fundamental (oboe). It can also be

observed that melodies played on any given insturment are still easily perceived after

the sound has been passed through a formant filter having a bandwidth much narrower

than the spectra of the original sounds. This is evident all the time when one listens

to music from an inexpensive transistor radio or over a telephone line. In this study

we shall attempt to find out through a series of psychophysical experiments how the

auditory system retrieves and encodes the information of the fundamental frequency

from a series of musical sounds.

The notion that musical sounds are sounds whose waveforms have a temporal

regularity such that their value on the note scale is determined by the temporal
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repetition rate goes back to the seventeenth century (Mersenne, I1636; Galileo, 1638).

How the ear tracks the successive temporal periodicities in a sequence of sounds was

first seriously raised as a scientific issue, however, when Seebeck 3 published some

experimental observations, in 1841. Using a siren, he was able to generate signals

with ambiguous repetition rates, such as a pulse train having interpulse periods equal

to t 1, t 2 , t 1, t 2, etc. and t1, t 2 , t 3, tl, t 2 , t 3, etc. He observed that the ear often
perceives such a sequence of irregular pulses as sequences of regular pulses with

repetition periods of t 1 + t 2 and t 1 + t 2 + t 3 , respectively. Only when the differences

between tl, t2 , and t 3 become very small will the ear perceive the pulse trains as

if they were regular pulse trains with periods of (tl+t2)/2 and (tl+t2 +t 3 )/3, respec-

tively.

Ohm, in 1843, disagreed with Seebecks notion that the ear tracks periodicities

in acoustic waveforms. He stated that in order to hear a tone corresponding to the

frequency f, the waveform must contain a component A sin (2rrft+ ), a statement

which became famous as Ohm's Acoustic law.5 He applied Fourier's theorem to the

acoustic signals used by Seebeck and showed that his theory predicted precisely what

Seebeck had observed. In the discussion that followed, Seebeck 6 - 8 argued that Ohm' s

theory did not explain his observations quantitatively, since he perceived the funda-

mental frequency much stronger than would be predicted by Fourier' s theorem, and

therefore that the "higher harmonics, which share a common period, somehow add to

the sensation of the fundamental." Ohm argued that Seebeck' s observation were not based

on physical facts but on an acoustical illusion. Seebeck then pointed out that the

issue was how periodic sounds are perceived and not how they can be described phys-

ically, and that such an issue can only be decided by the ear.

Helmholtz,9 in 1863, incorporated Ohm' s law in a psychophysical theory of hearing

which can be described in four parts:

1. The ear performs a Fourier analysis with limited resolving power. It analyzes

a complex sound "into precisely the same constituents as are found by sympathetic

resonance, that is, into simple tones, according to Ohm's definition of this concep-

tion. "

2. Each resonator excites a corresponding nerve fiber, which causes a specific

tonal sensation.

3. The sound-transmission process in the ear is characterized by nonlinear dis-

tortion at high sound intensities.

4. Stimulus interference produces sensation interference. Consonance is deter-

mined by the absence of beats that arise from limited spectral resolution.

The third hypothesis was necessary to explain earlier observation by Tartini, 1

Sorge, Romieu, and others that when the ear is stimulated by more than one tone,

sometimes other tones are heard which are not part of the stimulus. These T" subjective"

tones became known as "combination tones."

Despite many challenges, Helmholtz' theory rapidly became widely accepted

2
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because of its simplicity and comprehensiveness (see reviews by Rayleigh, Schouten, 14

Plompl 5). Many investigators gathered new psychophysical and physiological evidence

relevant to his hypotheses; we shall mention only a few. Wegel and Lane 16 studied

the masking effects of tones upon other tones. They found that the ear does not

behave as a set of resonators tuned as sharply as Helmhotz thought, but that there

was general support for his first hypothesis, in that masking effects are larger when

tones are closer together in frequency. Von Bk6sy, starting in 1941, directly

observed the mechanical properties and vibration patterns of the basilar membrane

in response to simple tones and found that they can be described as traveling waves,

having a rather broad envelope maximum whose location depends on the stimulus

frequency (for a comprehensive review, see von B6kesy 17). Later electrophysiological

studies of the auditory nerve showed that at that point the system is definitely tonotop-

ically organized (Galambos and Davis, 1 8 19 Tasaki,20 Kiang21 ).

Von B6k6sy 2 2' 23 also tried to find support for Helmholtz' second principle in a

somewhat more generalized form. He tried to reconcile the rather broad tuning

characteristics of the cochlea with the ear's ability to detect very small differences

in frequency by postulating a neural sharpening model which he tried to simulate

with the tactile sense of the skin. He observed that a very broad pattern of stim-

ulation can result in a strongly localized sensation, which he considers as support

for a possible neural sharpening process in the place-to-pitch transformation.

Helmholtz' third hypothesis concerning auditory nonlinearity has also obtained sup-

port from later psychophysical and physiological work, with important modifications:

(a) combination tones can occur at all sound intensities; (b) quadratic summa-

tion and difference tones are less important than Helmholtz thought; and (c) the

cochlea, rather than the middle ear, is the primary generator of combination tones.

Helmholtz' viewpoint that combination tones behave like tones added to the stim-

ulus has been fully supported, however, (Zwicker, 2 4 Plomp, 1 5 Goldstein, 2 5- 2 8 Goldstein

and Kiang 2 9 ).

Fletcher also tried to reconcile Seebeck' s experimental observations quantita-

tively with Helmholtz' theory. He showed that for a periodic sound a tone corre-

sponding to the fundamental can be heard even when all lower harmonics (up to about

the 7th are filtered out of the stimulus. He used Helmholtz' combination-tone hypoth-

esis to explain this effect: Whenever energy at the fundamental frequency is missing

in a periodic sound, the ear will reintroduce it by nonlinear distortion.

From the beginning, Helmholtz' concepts immediately evoked valid criticism. Stumpf 3 1

found it difficult to reconcile the dimensions of the cochlea with the dimensions neces-

sary to obtain resonance for the lower audible frequencies. K6nig3 2 produced

amplitude-modulated sounds by using a tuning fork and a siren disk. He reported

a tone sensation corresponding to the interruption rate, and later Hermann 3 3 found that

this tonal sensation can vary up to 20% when the frequency of the tone is not an integer

multiple of the interruption rate. For this last phenomenon Hermann had no explanation,

3
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but for the "harmonic" case he argued that the ear must perceive the periodicity in a

sound without the necessity of energy at that frequency. This was obviously in dis-

agreement with Ohm' s law. Physiological experiments with nerve-muscle prepara-

tions showed that stimulating the nerve with a periodic pulse could cause a vibration and

an audible tone in the muscle, indicating that nerve fibers could carry timing informa-

tion (Helmholtz,34 Bernstein 35). Thompson 3 6 confirmed a claim made earlier by

Dove 3 that when two tones of slightly different low frequencies are presented dichot-

ically, one to each ear, a clear beat is heard, which shows that under certain circum-

stances periodicity information is preserved in the auditory nerve. On the basis

of these findings, Wundt 3 8 argued that it is the rate of nerve impulses, synchronous

to the stimulus tone, that gives rise to a tonal sensation, and not the place of an active

nerve fiber or group of fibers. This idea was later formulated and developed by

Wever, 3 9 and became known as the "volley theory." Theories of hearing built exclu-

sively on this periodicity principle, and denying Helmholtz' resonance theory altogether,

were proposed by Rutherford 4 0 and by Meyer. 4 1 - 4 5

Schouten 47 re-established Seebeck' s original observations and demonstrated for

the first time that these cannot be reconciled with Helmholtz' combination-tone and

place-pitch theories as Fletcher had tried to do. Using an optical siren, he generated

a periodic pulse train in which the fundamental frequency was cancelled. He observed

that even at relatively low intensities this signal sounded similar to the original

pulse train, and not an octave higher. Upon adding a small test tone near the fre-

quency of the missing fundamental he found that no beats were produced, and showed

that a distortion tone could not be responsible for his and Seebeck' s observations.

The growing evidence of a tonotopic organization in the cochlea and the auditory nerve

kept him, however, from rejecting Helmholtz' resonance principle; his theory was an

attempt to reconcile the resonance and periodicity concepts. Schouten' s hypotheses are

(a) The ear performs a frequency analysis with limited resolving power, in accord with

Helmholtz' first hypothesis; (b) At each place, the periodicity of the resulting wave-

form is preserved "in the periodicity of-the excitation of the receptors," which is "trans-

mitted by the nerve fibres" and mapped into a pitch sensation; and (c) The place of exci-

tation determines the "tone quality," sharpness or timbre.

This model predicts that for a complex periodic signal the lower harmonics will be

perceived as separate tones, limited by the resolving power of the cochlear filters.

The higher harmonics, which are not resolved, result in a waveform whose envelope

periodicity is the same as that of the fundamental frequency of the stimulus. This

periodicity is preserved in the connected nerve fibers and causes a tonal sensation

which Schouten calls "the residue." His theory explains Seebeck's observation that

higher harmonics, sharing a common period, somehow add to the sensation of the

fundamental.

De Boer 4 9 confirmed an earlier observation by Small 5 0 that for a fixed number of

harmonic components the tonality decreases with increasing mean frequency. He also
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studied the effect of inharmonic tone complexes, which Hermann and Schouten had

reported on much earlier but had not explained. He postulated two mechanisms, one

operating in the temporal domain, the second in the spectral domain:

1. For complex tones with closely spaced frequencies the tonal sensation is derived

from the fine-structure temporal periodicity generated by (partially) unresolved stim-

ulus tones.

2. For complex tones with widely spaced frequencies the sensation is derived

from an approximate common divisor to the stimulus frequencies.

Schouten, Ritsma, and Cardozo 5 1 emphasized the fine-structure periodicity mech-

anism and developed an empirical formula relating the pitch of a three-tone AM

complex to its constitutent frequencies. Like de Boer, they found consistent dis-

crepancies between their experimental results and the predictions from the fine-structure

peak-to-peak distances in the AM stimulus waveform. They defined the simple theo-

retical prediction as the "first effect," and the measured discrepancy as the "second

effect." The spectral formulation also leads to a second effect. Fishler5 2 proposed a

model (equivalent to de Boer's time formulation) consisting in linear superposition of the

stimulus frequencies, followed by a peak-to-peak measurement in the time domain. Such

a model does qualitatively produce a second effect, but not large enough to explain the

data of de Boer4 9 and of Schouten and others.5 1 Walliser 5 3 proposed an operation called

"division and approximation," wherein the musical equivalent of an inharmonic complex

is given by that subharmonic of the lowest stimulus frequency which is closest to the dif-

ference frequency. The predictions of this model are the same as de Boer' s and Fishler' s

models when all weight is put on the lowest frequency in the complex, and hence

Walliser' s model does not produce enough of a second effect to explain the experimental

data satisfactorily. The empirical second effect suggested that for higher harmonic

numbers the effective spectral components had to be below the stimulus components.

Schroeder had proposed that a certain amount of phase modulation be added to the

amplitude modulation, thereby effectively adding spectral components that are not pre-

sent in the stimulus. Goldstein and Kiang 2 9 found physiological evidence that com-

bination tones are part of the effective stimulus; therefore, they suggested that it is

reasonable to account for the extreme second effect with an effective signal that contains

significant spectral energy at lower frequencies than exist in the actual stimulus.

Ritsma,55 who studied the pitch of three-tone complexes, and Smoorenburg, 56 who dealt

with two-tone complexes, concluded from their data that the effective harmonic number

is never larger than approximately 9, and that combination tones provide an explanation

for the extent of the second effect.

The finding concerning the upper bound of the effective harmonic number was con-

sistent with earlier studies by Ritsma. He found that the "tonal residue" for a

fundamental of ~200 Hz does not extend beyond the 10 or 15 harmonic, depending on

the experimental paradigm. Following Schouten's model, he then searched for a domi-

nant place or frequency region where a periodicity measurement is made, and found that

5
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this is given by the 3r d to 5t h harmonics.

It is interesting to notice that these last results, although obtained in studies

that embraced Schouten' s residue hypothesis, implied a contradiction of that hypothesis.

According to Schouten, periodicity pitch sensation should be bounded by a min-

imum harmonic number, determined by the ear's resolving power. Later studies

seem to indicate, however, that the real bound is an upper bound which is quan-

titatively not much different from the ear's spectral resolving power, according

to behavioral studies on resolution of stimulus tones (Plomp 1 5 ) and aural com-

bination tones (Goldstein 2 6 )

Other mechanisms than those mentioned thus far have been proposed. Some investi-

gators have claimed that the residue effect is very weak or based upon mental faculties

that are not auditory-specific. Thurlow 6 observed that subjects often respond with

great hesitancy when presented with a complex sound comprising upper partials only.

They seemed to use vocal humming as an intermediate response. This made him con-

clude that the listener does not "hear" the residue as a percept, but matches percepts

of the partials of his voice and those of the stimulus sound, and extrapolates the "best

fitting" fundamental. A related argument can be advanced that normally complex tones

preserve the fundamental melody information in the frequency ratios of upper partials;

tracking a particular partial of fixed harmonic number would recover the melody

described by the missing fundamental. Many of the results of tone-matching experi-

ments by various investigators can be explained as matching of spectral components if

we consider that subjects have a good estimate of frequency ratios other than just the

unison (Ward, 6 2 a Houtsma 62b).

When we consider our original observations of the ear's ability to track a

melody in a series of complex periodic sounds in the light of this brief his-

torical review, we conclude that there is little disagreement about the fact that

what the ear tracks is the fundamental frequency. The question of how the ear

extracts and encodes the information of the fundamental, however, is still very

much unsettled. The principal contrasting viewpoints concerning this last issue

are, we believe:

1. Energy at the fundamental frequency is a necessary condition; if it is not pre-

sent in the stimulus, the ear produces it by nonlinear distortion (place-pitch theory).

2. Fundamental periodicity at some place in the cochlea is a necessary condition

(periodicity-pitch theory).

3. No percept corresponding to the fundamental exists when the stimulus has no

energy at that frequency. Rather, a fundamental is associated with the sound via some

form of higher mental processing of percepts produced by the partials.

The purpose of this study is twofold: (i) to investigate the phenomenon of funda-

mental tracking in an experimental paradigm that closely simulates musical behavior;

and (ii) to produce new qualitative and quantitative experimental evidence in the light

of which the unsettled concepts mentioned above can be evaluated.

6
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1. 1 SUMMARY

In Section II we shall discuss some qualitative results of experiments on melody per-

ception and recognition, using stimuli comprising 2 successive harmonics. Such stimuli

are rather easy to generate and much is known about the physiological responses that

they evoke in the auditory nerve (Goldstein and Kiang, 29 Sachs and Kiang, 63 Sachs 64).

Section III will cover quantitative experiments on musical-interval identification, using

two-tone stimuli, both monotic and dichotic, and will show the need for a common cen-

tral mechanism underlying the fundamental tracking phenomenon. These experiments

explore in detail the salient properties revealed in Section II; they represent the heart

of this report. In Section IV we shall examine the existence region of this phenomenon

and its dependence on the number of partials in the stimulus, while phase effects will

be discussed in Section V. Section VI contains experiments using inharmonic two-tone

stimuli, both monotic and dichotic, and provides additional evidence that the phenomenon

under study is the same as that described in psychoacoustical literature as "the residue."

In Section VII we attempt to apply a simple decision model to reduce the data of Sec-

tion III to a single sensitivity parameter, and an empirical formula is derived to describe

its dependence on some relevant stimulus parameters. Conclusions and some sugges-

tions for future research are mentioned in Section VIII.

1. 2 EQUIPMENT

The equipment used for most of the experiments was three programmable oscillators

(one GR 1161-A frequency synthesizer and two KrohnHite 4031R oscillators), two Grason

& Stadler electronic switches, a dual audio amplifier, and a set of TDH 39 headphones.

Harmonic and intermodulation distortion measured at the headphones was better than

50 dB below stimulus level. In some experiments, when more than three tones were

needed simultaneously, a dual multiplier (CBL 47) was used. Subjects were seated in

an IAC Model 1200 sound-insulated chamber. Switches and oscillators were controlled

PDP-4

COMPUTER

OSCILLATOR I

OSCILLATOR 2

ANSWER

BOX

Fig. 1. Equipment diagram for all two-tone experiments.
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I { - UR 
I OSCILLATOR 1

(n+2)f0 t nf0

OSCILLATOR 2

(n + 1f0 (n- I)f 0

(nf)

OSCILLATOR 3
FIVE TONES

SIX TONES

2f0 (nl)f0OSCILLATO OSCILL 1
(n+3)f 0 (nil)f0

f (n2)f 0 , nf0

OSCILLATOR 2 OSCILLATOR 2

| OSCI-LLTO (n- 10° °

(nl)f
0 0 (n 2)f

0
)f0 ' n2f

OSCILLATOR 3 OSCILLATOR 3 

Fig. 2. Equipment diagram for all experiments using more than two stimulus
tones.

by a DEC PDP-4 computer, which generated all random events, performed stimulus

computations, stored responses and controlled feedback. Equipment diagrams are

shown in Figs. 1 and 2.

1.3 SUBJECTS IN EXPERIMENTS

Ten subjects, seven men and three women, participated in the qualitative experi-

ments described in Section II. All of them had at least some degree of musical training

and were familiar with musical notation and dictation. For most subjects training proved

unnecessary; a few were given some practice, starting with complexes of 6 harmonics

which were then gradually reduced to the two-tone stimuli used in the main experiments.

Three subjects from these ten were selected to participate in the rest of the experi-

ments on the basis of availability, interest, and general performance. All of them were

men, 18 to 31 years old, who had quite extensive musical training and experience (majors

in organ, viola, and singing). No special training sessions were given, and test sessions

were limited to a maximum 2 hours daily.

8
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II. PRELIMINARY EXPERIMENTS ON MELODY RECOGNITION

USING TWO-TONE STIMULI

2. 1 EXPERIMENT 1

We have discussed general musical behavior, in which the ear can track a melody

in a sequence of periodic sounds, rather independently of the number of harmonics or

the relative energy at particular harmonics. Ritsma 6 5 and his associates showed in

their demonstration phonograph record that placing a formant filter at different cen-

ter frequencies does not affect the perceived melody, but only the tone quality or timbre.

It should be noticed though that in experiments of this kind, as well as in music played

on conventional instruments, the spectral formant is either stationary or moves par-

allel with the fundamental frequency. It is not obvious, however, what the ear would

perceive when the fundamental and the spectral formant move independently of each
66

other. Cross and Lane have found evidence that prior training determines the cue

to which the ear attends. Therefore we performed an experiment in which subjects

I4J J J J

(a)

1- 

5,6 4,5 3,4 4,5

(b)

- 250 -- l _J 250
1 50 TIME (ms)

(C)

100 100

-250 o (5
150 TIME (ms)

(d)

Fig. 3. Experimental paradigm for four-note melody experiments. (a) Typical
fundamental melody. (b) Sample of actual stimulus frequencies; labels
indicate particular harmonic numbers. (c and d) Time structure of
stimuli for melody experiments.
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were given a sequence of 4 periodic sounds with fundamental frequencies between 200 Hz

and 400 Hz, describing a four-note melody as illustrated in Fig. 3. The sound was

just wo successive harmonics, the numbers being varied systematically over a limited
rd th th th thrange from note to note. They could be the 3 and 4 t h , 4 and 5 t h , or 5 and

6th harmonics of a fundamental corresponding to a particular note. A sample is

shown in Fig. 3b. Stimuli were presented monotically at a sound pressure level

(SPL) of 50 dB. The time envelope of the sound sequence is shown in Fig. 3c. The

subjects, all of whom were familiar with musical notation, were asked to write what

melody they heard. Some reported a melody that was consistent with the missing

fundamental, as in Fig. 3a; others reported a melody corresponding to the partials

as in Fig. 3b. One subject was able to report both melodies described by the upper

and lower partials.

Helmholtz 9 mentioned that complex periodic sounds can be perceived "syntheti-

cally" (that is, the complex is perceived as one sound having one pitch) or "analyti-

cally" (that is, partials are heard individually, each one having its own pitch). Cross
66

and Lane showed that these two modes of behavior can be controlled by previous

training. They had two groups of subjects scale 25 periodic stimuli, which were

combinations of 5 fundamental frequencies and 5 formant filters, in 5 categories

after training with only 5 stimuli. Depending on the choice of the five training

stimuli, the subjects scaled consistently according to the fundamental frequency

or the location of spectral energy. We therefore tried in a second experiment

to get all subjects to operate in the "fundamental mode" by eliminating all rele-

vant information in individual partials.

2. 2 EXPERIMENT 2

This experiment was similar to the first, except that there were 4 melodies sim-

ilar to the one illustrated in Fig. 3a. The subject had control over which of the four

melodies was to be presented by pushing one of 4 buttons on an answer box. The har-

monic numbers for each note were not chosen systematically, as in the first experiment,

but at random, over the same range as in Experiment 1. Subjects were instructed to

listen to each melody several times, and report a "consistent feature," if it could be

heard, on a relative note scale. Then, in the second part of the experiment, 50 trials

were presented comprising the same four melodies in random order, again with random

harmonic numbers, and the subjects were asked to identify each melody by pushing one

of the four buttons. After each presentation they were given 3 seconds in which to

respond, after which feedback was provided by means of an electronic number display

indicating the correct melody number. This experiment can be characterized as an

identification experiment of 4 classes determined by the sequence of fundamentals, each

class having 81 elements (3 possible choices of harmonic pairs per note).

After little training, the results were that 9 of the 10 subjects tested characterized

10



each class (corresponding to each button on the box) by the missing fundamentals in

the first part, and scored perfectly or nearly perfectly in the second part. These results

demonstrate a musical phenomenon of fundamental tracking, that, under certain condi-

tions, a musical message comprising a series of fundamental periods can be retrieved

aurally from a sequence of periodic sounds, irrespective of their harmonic content.

2.3 EXPERIMENT 3

As we have pointed out, there are many ways in which the fundamental frequency

could be derived from a pair of successive harmonics. This experiment and Experi-

ment 4 were designed to examine whether some of several possible operations which

the auditory system could perform can be eliminated. The experimental paradigm was

the same as in Experiment 2, except that in addition to choosing a random pair of har-

monics for each note, both harmonics were shifted up or down in frequency by a ran-

dom but equal amount, limited to one-fourth of the fundamental frequency, thereby

keeping the difference frequency equal to the fundamental but making the complex tone

inharmonic. Stimuli were presented at a sound pressure level of 50 dB and the sub-

jects were given the same instructions as in Experiment 2. Note that in this experiment

each class has virtually an infinite number of elements because of the random continuous

frequency shift. It turned out that even after repeated attempts none of the subjects

could hear any consistent melody in the sequences of 4 sounds; hence, no subject could

give a note description for any of the four classes. The identification part, like that in

Experiment 2, was therefore omitted. These results show that information of the

original fundamental was not perceived, despite the fact that it was preserved by the

transformed sounds in the form of the difference frequency.

2.4 EXPERIMENT 4

In this experiment we examined whether a necessary condition for fundamental

tracking is that both harmonics be present at the same time. The experimental paradigm

was the same as that of Experiment 2, except that instead of both harmonics being pre-

sented simultaneously, they were presented in time sequence, as illustrated in Fig. 3d.

The subjects were instructed as in Experiment 2, and most of them knew how the stimuli

were organized. Despite considerable practice, none of them was able to determine the

fundamental frequencies or musical intervals underlying each class of stimuli, even

after having heard a large number of samples from each particular class. Most of the

subjects agreed that more practice would not help and that the task could not be done.

Therefore we conclude that the simultaneous presence of more than one harmonic is

indeed a necessary condition for fundamental tracking.

2.5 EXPERIMENT 5

In Experiments 1-4 we have seen, among other things, that 2 successive harmonics

with numbers between 3 and 6, simultaneously presented to one ear, create a sensation
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that is musically equivalent to a tone of the missing fundamental frequency. From the

viewpoint of the residue theory this seems paradoxical, since harmonics of low order

can easily be resolved behaviorally, given the appropriate experimental paradigm

(Plomp ). Also, on the basis of known cochlear electrophysiology (Kiang, 2 1 Sachs and

Kiang, 6 3 Goldstein and Kiang, 2 9 Goldstein27), insignificant cochlear interaction would

be expected for such low-order harmonics. This further suggests that there is some

kind of central processor that receives its inputs for each resolved tone through sep-

arate channels. This separate-channel hypothesis was tested by the extreme channel

separation of using separate ears. We thought that, although negative results would

not necessarily invalidate the hypothesis, positive results would undeniably prove it to

be correct. The experimental paradigm was that of Experiment 2, except that both

harmonics were presented dichotically, one to each ear. The performance of 6 of 10

subjects was the same as in the monaural version. They reported melodies corre-

sponding to the missing fundamentals and scored nearly perfectly in the identification

part. Three subjects had some difficulties in both parts, which probably could have

been improved by more practice; this was not given, however. One subject, who also

had serious difficulties in the monaural experiment, was unable to perform the task. The

exact percentage of the subjects who could perform this task, the scores of those sub-

jects who found this experiment more difficult than others, and how their performance

might improve with more training are issues that are not considered to be very impor-

tant. The performance of most of the subjects tested does show that the missing fun-

damental can be tracked reliably from pairs of successive harmonics presented through

separate ears.

2. 6 DISCUSSION

Through a series of qualitative and objective experiments we have established the

phenomenon of fundamental tracking and have investigated some conditions under which

it does or does not exist. By qualitative we mean that the only question we were trying

to answer was whether a subject could or could not perform a particular task. Matters

such as the exact number of right and wrong answers, the number of occasional mis-

takes in tracking the fundamental, the amount of training required for each subject, and

the possible contribution of previous musical experience were not considered, although

some of these issues may be worthwhile to study. By objective we mean that the sub-

ject was asked a question and was required to answer, the answer being either right

or wrong. The subject' s performance was then taken as a criterion for the presence

or absence of the phenomenon under study, while the experimenter tried to control sys-

tematically those features of the stimulus which might provide the subject with infor-

mation about the correct answer.

When we compare the experimental results obtained from Experiments 1-5 with the

different theories described in Section I, we see that none of these theories is suffi-

cient to explain all of the results. Helmholtz' theory that a melody can be perceived
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only if there is energy at the respective fundamentals is clearly contradicted by the

results of Experiment 2, in that subjects were able to track the fundamentals while no

energy was present at these frequencies. The possibility that such energy is rein-

troduced in the ear by nonlinear distortion is rendered highly improbable by the fact

that these experiments were carried out at a stimulus intensity of 50 dB SPL, at which

the difference tone is below the threshold of perception (Goldstein 6), and by the results

of Experiment 3. If difference frequency per se were a relevant clue for the subject,

his performance should not depend on random shifts in stimulus frequencies, as long

as their difference is kept unchanged. The possibility of difference tone distortion is

finally eliminated categorically by the results of Experiment 5, in which the notes were

heard with only one tone in each ear.

Periodicity theories, in their extreme form (Meyer) or combined with peripheral

frequency analysis (Schouten), do indeed predict the results of Experiments 1, 2, and 4,

and also with some modifications of Experiment 3. The results of Experiment 5 cannot

possibly be explained by any form or modification of the periodicity theory. With dichot-

ically separated tones there is no place in the peripheral auditory system where envelope

periodicities, corresponding to the missing fundamental, could possibly arise.

Some of the theories in which it is assumed that there is no direct perceptional coun-

terpart of the missing fundamental but that the fundamental is indirectly derived from

perceptions of upper partials (viewpoint 3 in Section I), are not clearly supported by

our experiments, but neither can such theories be categorically rejected. We thought

that if the fundamental were derived from independent sensations of individual par-

tials, the paradigm of Experiment 4 would make the task of fundamental tracking easier

for the subject, rather than more difficult. The results show, however, that under these

conditions the task is not only more difficult but completely impossible, which proves

the necessity of the simultaneous presence of at least two partials. Since the duration

of the stimulus (Fig. 3c) and the response times were relatively short in all of our

experiments, it appears that there would not be sufficient time to perform elaborate

computations such as those involving humming (Thurlow ). We know of no way of

proving that a direct percept of the fundamental exists; introspective reports from our

subjects that "the melodies were really there" are the only information that we have

about this matter. All of our experiments were performed from the viewpoint of mea-

suring musical behavior, and in this report questions of the existence or absence of

a percept are considered moot.

The use of dichotic experiments to differentiate between peripheral and central

effects is not new. Experiments on binaural beats were mentioned in Section I. Dove 3 7

used dichotically presented partials to prove that Tartini tones (combination tones

arising from monaural distortion) are not subjective but objective. He failed to hear

a difference tone when two successive partials were presented to different ears through

rubber tubes. Similar experiments were performed later by Thompson. 36' 67, 68 Although

both investigators noticed the absence of a distortion tone in the dichotic case, they
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did not notice, or at least did not report, any musical pitch sensation corresponding

to the missing fundamental.

Our dichotic experiments prove directly that neither fundamental energy nor fun-

damental periods in the cochlear output are necessary conditions for fundamental

tracking. This is a new finding; it shows that, at least for the dichotic conditions, fun-

damental tracking behavior must be mediated by a central, neural mechanism operating

on signals derived from separated partials. The location of this mechanism can be any-

where at or beyond the level of the superior olivary complex.
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III. IDENTIFICATION OF MUSICAL INTERVALS

USING TWO-TONE STIMULI

3. 1 INTRODUCTION

The results of the experiments described in Section II, specifically the dichotic

experiment, demonstrate the necessity for a central neural mechanism with bilateral

inputs. This in no way disproves the existence of other mechanisms which may be

employed when stimulus tones are presented monotically. In order to determine

whether both monotic and dichotic fundamental tracking can be accounted for by one

central mechanism, or whether additional mechanisms are required, we carried out

a series of quantitative experiments. Comparison of the results from monotic and

dichotic paradigms could indicate whether or not a common mechanism is sufficient.

3.2 EXPERIMENTS - GENERAL REMARK

Five experiments that have many common features were performed. First, these

features will be described. Then each experiment will be described and the results

will be discussed.

The subjects' task was to identify on each given trial which one of 8 known two-

note melodies (or musical intervals) was presented. These simple melodies had

identical envelope time structure and all began with the same note. The notes were

tuned to the natural scale, with frequency ratios of 16/15, 9/8, 6/5, and 5/4 for

the minor and major second, and minor and major third, respectively. The stim-

uli representing the notes comprised two successive harmonics, the number of the

lower harmonic being chosen randomly for each note over a range of 3 successive

integers. The middle of the range of lower harmonic numbers, n, and the funda-

mental frequency of the first note, f were chosen as independent parameters in

measuring identification performance, expressed in percentage correct responses.

The basic experimental paradigm is illustrated in Fig. 4. The reason why this par-

ticular set of musical intervals was chosen is not that we assume an inherent signifi-

cance in the intervals, but merely that, at least in Western culture, they provide

a convenient language which musically trained people can understand. Whether in

other cultures a different choice of intervals would lead to similar results is beyond

the scope of this work. The three subjects who participated in this series of exper-

iments were first tested for their ability to identify musical intervals played with

square-wave stimuli at fundamental frequencies equal to the notes in Fig. 4a; con-

trol runs of 50 trials were carried out. Subjects were given a key similar to

Fig. 4a which ascribed a number to each interval, and were instructed to push a

corresponding number on their answer box within 4 seconds after each stimulus pre-

sentation, after which feedback was provided. All three subjects scored perfectly.
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Fig. 4. Experimental paradigm for musical-interval identification
experiments.
(a) Musical intervals to be identified.
(b) Time envelope of the total stimulus.
(c) The three possible two-tone stimuli for each of the

two notes; for each note a random choice was made
among the three possible stimuli.

(d) Stimulus configuration for one note of a dichotically
presented melody, with the addition of simulated
combination tones.
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In Experiments 6-10, the subjects were tested individually; A. H. and S.W. were

always given feedback, but N.H. was not because he found it distracting. Typical

runs were 50 trials for Subject A.H., and 25 trials for Subjects S.W. and N.H.

Fundamental frequencies were taken in steps of 100 Hz or sometimes 200 Hz, as

indicated in the figures; for each fundamental frequency several runs were taken

with increasing average harmonic number . As many runs were taken as were

necessary to make performance drop from perfect identification to essentially chance.

(One out of eight correct is chance response.) Then a psychometric function was

fitted by eye for each fundamental frequency, n being the independent variable, and

from these functions equal performance contours were plotted. These psychometric

functions are plotted in Appendix I.

3.3 EXPERIMENT 6

In Experiment 6 stimuli were presented at a 20- dB sensation level, the inten-

sities being adjusted for each value of n to roughly match each subject's audiogram.

The audiograms are shown in Fig. 5. Contours of equal performance from this

experiment are shown in Fig. 6 for each subject. Additional data for an extended

fundamental frequency range were obtained from only one subject (A. H.) and are

shown in Fig. 1 la. On Subject A. H. a control experiment was performed with the

partials of each note presented in time sequence, similarly to Experiment 4. Values

for f0 and n were chosen which had yielded perfect performance for monotic simul-

taneous presentation. Despite great effort, Subject A.H. was not able to perform

better than chance, from which we conclude that randomization of harmonic number

forces the subject to use both partials, and that these partials must be presented

simultaneously.

3.4 EXPERIMENT 7

This experiment was made in the same way as Experiment 6, except that the

two simulus tones were presented dichotically, one to each ear. Results are shown

in Fig. 7 and Fig. lb.

A quick comparison of Figs. 6 and 7 shows that each subject's performance is

essentially identical in the monotic and the dichotic tests, which suggests that indeed

a central mechanism integrates and processes information from both cochleas, and

that the inputs to this mechanism are similar under monotic and dichotic stimulation.

3.5 EXPERIMENTS 8 AND 9

To further investigate the similarities in performance for monotic and dichotic

conditions, Experiments 8 and 9 were undertaken at a higher stimulus intensity level,

50 dB SPL for Subjects A. H. and S. W., and 40 dB SPL for Subject N. H., monotic

and dichotic, respectively. Equal performance contours for the monotic and the

dichotic experiments are shown in Fig. 8 and Fig. 9, respectively.
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Comparing results from all four experiments, we see that each subject s per-

formance is essentially the same under all four stimulus conditions, except that for

higher intensity monotic stimulation (Fig. 8) performance contours are shifted upward

by approximately 2 or 3 harmonic numbers. Such an upward shift might be expected

because of the presence of aural combination tones of type fl-k(f2 -fl) generated in

the peripheral ear for a monotic stimulus comprising the frequencies fl and f 2

(Goldstein,26 Goldstein and Kiang 2 9 ). These combination tones provide the ear with

2 or 3 harmonics below those contained in the stimulus, which are probably very

useful because all results thus far indicate that performance improves with decreasing

harmonic number. These combination tones could make the effective average har-

monic number approximately 2 or 3 lower than the actual value of n in Fig. 8. In

the dichotic experiments combination tones are not present, and in the monotic exper-

iment at 20 dB SL they would be near or below threshold.
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3.6 EXPERIMENT 10

To test this combination-tone hypothesis more directly, Experiment 10 was carried

out using dichotic stimuli at 50 dB SPL (40 dB for Subject N.H.) with the addi-

tion of 2 tones that approximately simulate the aural combination tones that the ear

generates under monotic conditions. The stimulus paradigm is shown in Fig. 4d,

and the experimental results in Fig. 10. The same upward shift of performance

contours as in Experiment 8 can be readily noticed, and the similarity of Figs. 8

and 11 furnishes strong evidence that the performance differences that do occur

between monotic and dichotic stimulus conditions can be attributed to combination

tones generated in the peripheral ear.

3. 7 DISCUSSION

The results of this series of experiments show that all theories that have been

developed to explain how we can track a melody in a sequence of complex sounds

are inadequate. A place-pitch theory based on Helmholtz's principles would pre-

dict for the monotic paradigms a performance of approximately 41% correct for all

harmonic numbers up to the point where the ear' s frequency resolution limit is reached.

If we assume that a musical interval described by resolvable partials in the two-

note sequence can always be recognized perfectly, then at least one-third of all

trials must be identified correctly because the harmonic numbers of the second note

will be the same as those of the first, and both partials will form the same inter-

val as the missing fundamental. Then, on the average, one-eighth of the remaining

trials will be answered correctly by chance, making the average correct score

approximately 41%. It is clear from our data that this prediction was not borne

out. We might wonder why performance for the dichotic paradigms was ever less

than 41%, since under these conditions there should not be a frequency resolution

bound as in the monotic case. The answer may be that the subjects did not or could

not, because of physiological constraints, switch their strategy from listening for

all intervals "in the same key" to attempting to hear intervals described by partials

in transposed keys.

A periodicity model like that developed by Schouten would predict a behavior just

opposite to that of our experimental results. The lower harmonics, which are resolved

in the cochlea, would not provide the right kind of information about the fundamental

because they are randomly chosen. Only the higher harmonics, which cannot be sep-

arately resolved, would reflect the fundamental in their envelope periodicity, irre-

spective of their exact harmonic number. Hence the model would predict that correct

identification should increase with n, while the data clearly show that the opposite is

true over the whole fundamental frequency range.

Our results in general are consistent with Ritsma' s empirical finding that har-

monics 3 to 5 are the most dominant in providing a musical equivalent to the fundamental.
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Our data do not show, however, that performance deteriorates for harmonic num-

bers lower than 4; performance for stimulus parameters below the 100% correct

contour is always perfect. It might be that Ritsma's experiments were more sen-

sitive than ours in this respect, and that we missed some small effect.

Smoorenburg' s conclusion that the effective harmonic numbers for fundamentals

of 200 Hz have an upper bound of approximately 9 is also supported and extended

to other fundamentals by our results. For n greater than 9, performance is essen-

tially chance for any fundamental frequency, unless combination tones provide effective

harmonics below this upper bound, as with the 50-dB SPL monotic stimuli. This upper

bound also coincides rather closely with the limit to the ear's frequency resolving power

(Plomp ). It is interesting that the same boundary applies when the stimulus tones are

presented dichotically. Obviously, limited frequency resolution in the peripheral ear

cannot be responsible for restricting perception of the missing fundamental to tones of

harmonic number below approximately 10; the cause must be more central.

The question put at the beginning of this section about whether or not one common

neural mechanism is sufficient to account for all fundamental tracking behavior has been

answered unambiguously by our experimental findings. The qualitative and quantitative

similarity of the data for monotic and dichotic conditions and for different intensities

eliminates the need for more than one fundamental tracking mechanism. The contour

shift for medium-intensity monotic stimulation can be well accounted for by aural com-

bination tones added by the peripheral ear.

In Section II, it was shown that neither energy at the fundamental frequency nor fun-

damental periodicity in the cochlear outputs is a necessary condition for fundamental

tracking. From a converse point of view we can now state that a sufficient condition is

given by energy at the fundamental, which can easily be shown experimentally, but prob-

ably not by fundamental periods in the cochlear output. The experimental data from

Experiments 6-10 suggest that such fundamental periods are probably irrelevant for the

following reasons: (a) Monotic stimuli, which can provide cochlear fundamental per-

iods, give no better performance than dichotic stimuli. (b) With monotic stimuli the

possibilities for fundamental periods in the cochlear output are enhanced as the har-

monic number n is increased. Yet interval identification performance deteriorates

with increasing harmonic number. (c) All monotic stimuli for which identification

performance was better than chance were either behaviorally resolvable tones or

stimuli that generated these tones as combination tones (Plomp, 1 5 Goldstein26).

The close correlation between the limits on fundamental tracking and behavioral fre-

quency resolution and the similarity of monotic and dichotic performance suggest that

for complex-tone stimuli the fundamental tracking mechanism operates on those stimulus

tones or combination tones that can be resolved by the cochlea. This conclusion is a rad-

ical departure from the theory of the "residue," which is defined as "the joint perception

of those higher Fourier components which the ear fails to resolve" (Schouten, Ritsma,

Cardozo51 ).
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IV. FUNDAMENTAL TRACKING AND THE NUMBER OF

STIMULUS PARTIALS

4. 1 INTRODUCTION

The experiments described in Sections II and III employed stimuli comprising

only two successive harmonics. When we perceive a melody from a musical instru-

ment, we are usually presented with a much larger number of harmonics. Most

studies investigating the auditory system's ability to extract information of the fun-

damental from a complex sound employed signals containing more than two partials.

Seebeck 3 and Schouten 4 6 used pulse trains, which contain a very large number of

harmonics. The same can be said of Thurlow and Small 6 9 and of Flanagan and

Guttman. 70'71 De Boer 4 9 studied pitch effects of harmonic and inharmonic tone com-

plexes comprising 5 and 7 partials; he thought that 5 was about the lowest number

from which a stable and distinct "residue" could be obtained. Schouten and others 5 1

showed that 3 successive upper partials, contained in an AM complex, are suffi-

cient to evoke a fundamental sensation, and that from a behavioral point of view

such signals are equivalent to those used by de Boer. Recently, Smoorenburg 5 6

showed that the same is true for two-tone signals. Nevertheless, there seems

to be general agreement and some direct experimental evidence (Walliser 5 3 ) that

the sensation of the missing fundamental becomes stronger with an increasing

number of upper partials. In order to investigate how behavoir depends quantita-

tively on the number of harmonics present in a stimulus, and whether experi-

mental results from stimuli comprising various numbers of partials all reflect

basically the same phenomenon, Experiments 11 and 12 were carried out.

4.2 EXPERIMENT 11

Using the interval identification paradigm described in Section III, we studied

recognition behavior for stimuli comprising 3 successive harmonics. Stimuli were

generated by means of two oscillators and a modulator so that the partials had

equal intensity and were in AM phase. The total stimulus intensity was kept

at a sensation level of 20 dB. For monotic presentation the stimulus partials

were added and presented to one ear, and for dichotic presentation the carrier

was presented to one ear, the side tones to the other ear. Runs of 25 trials

were taken for two subjects, S.M. and R.C., both women, who had had wide

musical experience (singing). Figures 12 and 13 show equal performance con-

tours for monotic and dichotic stimuli, respectively. The variable n represents

the center of the range of the lowest partial; as in the experiments in Sec-

tion III, partials could vary randomly for each note over a range of 3 harmonic

number s.
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4.3 EXPERIMENT 12

Using the same interval identification paradigm as in Section III, performance was

studied for just one fundamental frequency (300 Hz) as a function of n, the center of the

range of the lowest partial. The number of partials in the stimulus, m, was an experi-

mental parameter and the range over which the lowest of the m successive har-

monics was randomly chosen for each note was extended from 3 to 5. Stimuli were

presented at sensation levels of 15 dB for Subject A.H. and 30 dB for Subject N.H.

In order to minimize possible combination tones, the stimulus partials were divided

dichotically into even and odd harmonics, so that each ear was never stimulated by

two successive harmonics. Each run included 50 trials for Subject A. H. and 25 for

Subject N. H. A family of psychometric functions for each subject is shown in Fig. 14.

4. 4 DISCUSSION

The results of Experiment 11 show great similarity with identification data for

stimuli comprising only two partials. Behavior for monotic and dichotic stimulus

conditions is essentially identical, and the general tendencies are the same as for

two-tone stimuli. Further comparisions should not be made, because of the dif-

ferent subjects that were employed in the three-tone experiments. Experiment 12

enables us to compare performance of two subjects for stimuli containing various

numbers of harmonics. It shows that fundamental tracking performance does improve

with an increasing number of partials contained in the stimulus, which is consistent

with the notion that we have mentioned that the more harmonics the stimulus con-

tains, the stronger is the sensation of the fundamental. But the data show also

that this is true only for a limited range of m; when the stimulus contains 4 har-

monics or more, the addition of higher harmonics will not add anything behaviorally

useful to the fundamental sensation.

The largest value of m in our experiments was 6. Ritsma' s finding58 that for

a bandpass-filtered pulse train with a pulse rate of 280 pps the maximum harmonic

number of the lowest audible harmonics for which subjects could just hear a "tonal

residue" was 11 or 12 is consistent with our findings; the width of his bandpass fil-

ter was such that the stimulus contained a large number of harmonics.

The results of both experiments, which involve more than two partials, are also

consistent with the notion that a central processor operates on those stimulus par-

tials that are peripherally resolved. Specifically, we point to the similarity in the

performance of both subjects in Experiment 11 under monotic and dichotic stimulus

conditions, and at the similar bounds on the lowest stimulus partials in Experiment 12

in which dichotic stimuli were used and in Ritsma's monotic results.

The fact that in Experiment 12 one subject (N. H.) still performed significantly better

than chance with four- or six-tone stimuli and a value of 13 for n does not necessarily

contradict our condition of peripheral frequency resolution for the following reasons:
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1. The range of random choice of the lowest harmonic number was extended

to 5 in this experiment; this means that when n equals 13, 40% of the trials will

have a lowest harmonic number of 11 or 12.

2. Since for this particular subject stimuli were presented at a sensation level

of 30 dB, and the partials were distributed between the two ears in such a way that

it is quite likely that combination tones similar to type f - k(f 2 -fl) for two-tone

stimuli played an important role. For instance, when the total stimulus comprises

harmonics 13 through 18, one ear receiving harmonics 13, 15, and 17 may gener-

ate harmonics 11 and 9 as audible combination tones, and the other ear may simi-

larly produce harmonics 12 and 10. The fact that aural combination tones can indeed

extend the range of fundamental tracking beyond the point where stimulus partials

are known to be behaviorally resolved, has been demonstrated in Section III.

In summary, the main conclusions from the experimental results described in

this section are as follows.

1. All fundamental tracking behavior in harmonic tone complexes comprising two

or more harmonic frequency components reflects the same basic phenomenon.

2. Within the range of peripherally resolvable harmonics, a larger number of

harmonics in a tone complex will result in better fundamental tracking performance

up to a certain point. When the number of such harmonics exceeds approximately

4, the improvement effect saturates.

3. For all harmonic complex stimuli, regardless of the number of stimulus

partials, a necessary condition for fundamental tracking is that some of the lower

partials of the effective stimulus, including possible aural combination tones, can

be peripherally resolved, independently of whether partials are presented monotically

or dichotically. From the dichotic two-tone experiments described in Section III

it is clear, however, that peripheral resolution is not in itself a sufficient condi-

tion for fundamental tracking because each ear receives only one tone and yet per-

formance clearly decays with increasing harmonic number.
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V. EFFECTS OF RELATIVE PHASE IN TONE COMPLEXES

COMPRISING MORE THAN TWO HARMONICS

5. 1 INTRODUCTION

We have shown the necessity for a central neural "pitch processor" receiving sep-

arate inputs derived from peripherally resolved stimulus components. When more than

two harmonic components are employed, the system shows the same general behavior

as for two-tone stimuli. When a stimulus comprising more than two harmonics is

resolved into its partials in the cochlea, and the cochlear filtering and neural trans-

formation processes retain the information of the phase relations between stimulus

components, then it is quite possible that fundamental tracking behavior is dependent

on the relative phases of the stimulus partials.

Mathes and Miller 7 2 reported a clearly perceptible change in sensation when the

carrier in a monotically presented AM complex was changed from a 0° phase relation

(AM phase) to a 90 ° phase (QFM phase). The former caused the complex to sound quite

harsh, accompanied by a low pitch corresponding to the modulation frequency, while a

much smoother sound resulted from the latter phase relation. They noted that the harsh

quality of the sound was always observed when the stimulus waveform showed a maxi-

mum of amplitude modulation, and they suggested a relation between their observations

and Schouten' s "residue." Licklider 7 3 used this argument to explain why Hoogland74

was unable to observe a "residue" in a complex sound generated by a number of care-

fully tuned oscillators. Since Hoogland did not control the phase relations between har-

monics, on which the "residue" presumably depends, he did not observe it. Licklider

demonstrated that a low pitch, corresponding to the missing fundamental is easily heard

when the relative phases are adjusted in such a way that the stimulus waveform has a

maximally impulsive pattern. This finding was re-established later by other investiga-

tors, among them de Boer4 9 and Walliser. 5 3

Ritsma and Engel studied the pitch of a harmonic three-tone complex with the

carrier in quasi FM phase by having subjects adjust the missing fundamental of a har-

monic three-tone AM signal until the pitches matched. They found with this procedure

that the pitch of the QFM complex showed significant and systematic deviations from its

fundamental frequency. Thus the low pitch that can be heard in a harmonic three-tone

complex can not only be made more or less pronounced by changing the carrier phase,

but actually can be changed.

The observation that the perception of a low pitch depends heavily on the rela-

tive phase relationships between stimulus components is contradicted by Ritsma' s
59 60 rd th

studies on the "dominant frequencies" in complex sounds. If indeed the 3 , 4

and 5th harmonics are most prominent in creating a fundamental pitch sensation, then

they are beyond the limit of phase sensitivity of the ear to monaurally presented tone

complexes because they are more than 20% apart (de Boer, 4 9 Goldstein 2 5 ' 26). In other

words, the most prominent partials for fundamental pitch perception are just those to
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which the ear is phase-insensitive!

Our findings that fundamental tracking behavior is basically the same for monotically

and dichotically presented tone complexes enables us to examine the question of the influ-

ence of relative phase on fundamental perception directly by means of a simple experi-

ment.

5. 2 EXPERIMENT 13

A two-interval, two-alternative forced-choice discrimination experiment was carried

out between two three-tone complexes, one in AM phase and the other in QFM phase,

for both monotic and dichotic stimulus conditions. In the monotic case all three tones

were presented to one ear, while in the dichotic case the carrier and side tones were

presented to different ears. The carrier frequency, fc, was kept at 2000 Hz and at twice

the amplitude of the side tones, thereby producing a 100% modulation depth for the AM

phase. The modulation frequency, f was varied in steps from 25 Hz to 500 Hz. Stim-

ulus intensity was kept at 40 dB SPL. Only one subject (A. H.) participated in this exper-

iment. In each trial he was presented with a 500-ms soundburst of the AM phase signal,

shortly followed by a 500-ms burst of the QFM signal, or in reverse order. The signals

differed only in the carrier phase. He had to make a binary choice in each trial about

the correct order in which the signals were presented. Feedback about the correctness

of the response was provided after each trial. An equipment diagram is shown in Fig. 15.

For several values of the modulation frequency fm' runs of 25 trials were taken for both

Fig. 15. Equipment diagram for two-alternative forced-choice phase discrim-
ination experiments. The bipolar switch is so programmed that for
each trial the probability of either state is 50%.

monotic and dichotic stimulus conditions. The resulting psychometric functions are

shown in Fig. 16.

It is quite evident that for monotic stimuli there is a strong phase effect. For par-

tials spacings less than 12% the AM and QFM signals are perfectly discriminable; when

the spacing is more than 20%, they apparently sound identical, as indicated by the

chance-level performance. The psychometric function is not a simple monotonic one. The

subject reported that a clue reversal took place in the following sense: With increasing
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dichotically at 40 dB SPL. Carrier frequency f , 2000 Hz.
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fmo the AM and QFM complexes were initially distinguishable by their harsh and smooth

sounds, respectively, then they began to sound more and more similar, after which they

became again easily distinguishable by smooth and harsh qualities, respectively, and

finally they became indistinguishable for good. This subjective report is consistent with

the subject' s performance reflected in a "bi-modal" psychometric function.

From the experimental results it is equally evident that for dichotic presentation,

the carrier in one ear and both side tones in the other ear, there is no noticeable phase

effect. No modulation frequency fm was found for which performance was significantly

better than chance. Several other carrier frequencies and stimulus intensities were

tried, but none of them yielded positive results.

5.3 EXPERIMENT 14

Another, more qualitative, experiment was carried out. It is well known that if we

present an AM suppressed carrier signal monotically and add a slightly mistuned

carrier to the signal, a clear beat will be heard, provided the spacing between the

signal components is smaller than -20% (Kelvin, de Boer 49), since a mistuned car-

rier can be interpreted as if it were precisely tuned but with a phase angle that

linearly increases with time. If the signal components are spaced in such a way that

AM and QFM phase relations can easily be distinguished aurally, then some kind of beat-

like effect should be expected when the signal changes back and forth between these states

in a continuous way. It has been observed experimentally that a clear beat is heard

also at exactly those stimulus frequencies and intensities that yielded a dip,, in the

30

nn _

I



psychometric function for the forced-choice experiment. This indicates that the dip

should not be interpreted to mean that at these stimulus frequencies the system is

insensitive to phase, but only that it is insensitive to the difference of the two particu-

lar phase relations. We made an attempt to create a similar beatlike effect with the

slightly mistuned carrier in one ear and the side tones in the other ear. A large number

of carrier frequencies, modulation frequencies, and intensities were tried with 3 sub-

jects, and no combination was found for which beats or beatlike effects were reported.

5.4 DISCUSSION

These experiments give a clear answer to the question posed at the beginning of this

section. Fundamental tracking behavior with two- and three-tone stimuli at low inten-

sities is essentially identical for the monotic and dichotic paradigms. Thus we conclude

that the central pitch processor treats monotic and dichotic signals equivalently. We

have shown that dichotic three-tone stimuli do not give noticeable phase effects. There-

fore we conclude that the central pitch processor is insensitive to the relative phase

relations between its separate inputs. This means that the monaural phase effects dem-

onstrated in one of our experiments and reported elsewhere (Goldstein 2
' 6), and their

relation to the sensation of the "residue," must have a more peripheral cause. A pos-

sible explanation could be given by the cochlea' s nonlinear properties. Goldstein 2 7

reported that for a monaural stimulus comprising 3 equally distant frequency com-

ponents fl, f, and f3, the intensities of the aural combination tones of type fl-k(f2 -fl)

were very greatly dependent on the relative intensities and phase relations of the stim-

ulus tones. The exact relations have not been mapped out quantitatively, so that

there is no way, at present, to show, for instance, that the dependence of combination

tones on relative phase of stimulus frequencies does explain the results of our monotic

phase experiment. It is possible that aural combination tones and related mechanisms

may be sufficient to explain many of the established monaural phase effects.

The conclusion that the central pitch processor is phase-insensitive means that

Licklider' s account of Hoogland' s failure to hear a "residue" is only a partial explana-

tion. Indeed, by adjusting the phase of stimulus components, we might maximize some

intensities or an average intensity of aural combination tones, which then might add to

the sensation of the missing fundamental, but this can only be a secondary effect.

Hoogland should have been able to hear a "residue" since we have shown that subjects

can track a missing fundamental from dichotically presented harmonics where phase is

irrelevant. The primary reason for Hoogland s failure is that he chose harmonic num-

bers in the vicinity of approximately 30; the results of Section III show that with such

a value of n the fundamental cannot be tracked.

Ritsma and Engel' s report that phase changes in the carrier of a three-tone com-

plex caused large pitch changes may appear to be basically inconsistent with our con-

clusion that the pitch processor is insensitive to the phase relations among its inputs.

Their results, however, could also be explained by peripherally generated combination
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tones. The harmonic numbers which they used were larger than 9, which is just about

at the limit of behavioral frequency resolution. Combination tones, which have been

shown to depend on the phase of the carrier, can conceivably change the pitch impression

by drastically changing the spectral composition of the effective stimulus. They report

also that when harmonic numbers around 5 or 6 were chosen, the pitch of the QFM com-

plex was always judged equal to the missing fundamental, as for an AM phase carrier,

which is completely consistent with our findings and conclusions.

The conclusion drawn from Experiments 13 and 14 is that the extraction of funda-

mental information from a tone complex is not directly dependent on the relative phase

of the tones. The central neural processor is insensitive to the phase relations of its

separate inputs. The established phase effects for monaurally presented tone complexes

must therefore be caused by some mechanism peripheral to this central processor.

Cochlear nonlinearities that generate combination tones play a major role in producing

these phase effects.
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VI. AURAL TRACKING OF INHARMONIC TWO-TONE COMPLEXES

6. 1 INTRODUCTION

Thus far we have focused our study of musical behavior on periodic stimuli, namely

complex tones whose partial frequencies are exact multiples of one and the same number

which was called the "missing fundamental." This restriction enabled us to refer to note

identification in a sequence of such sounds as "fundamental tracking." When one or more

stimulus partials are shifted in frequency from a harmonic situation, the complex tone

becomes inharmonic and we can no longer speak about a missing fundamental, since the

component frequencies are no longer integer multiples of some number. One might ques-

tion whether or not such an inharmonic sound has a specific musical pitch in the opera-

tional sense that it can be associated with a note on the musical scale. We shall make

an attempt to answer this question. The results will provide a logical link with earlier

work on musical pitch.

Experiment 3 dealt with a specific case of inharmonic sounds. In that experiment

no melody was perceived when for each note of the melody score the pair of succes-

sive harmonics was shifted in frequency by a random amount. This finding does

not answer the question of whether the inharmonic tone complexes do not have a

definable musical pitch or whether they do have a pitch that depends lawfully on the

random shift, so that the original melody would have been transformed into an unrec-

ognizable melody.

Several experiments have been reported that offer a definite answer to this question.

Hermann 3 3 and Schouten 14
' noticed that shifting the frequencies of harmonic partials

from a harmonic situation causes a change in pitch. De Boer,4 9 Schouten, Ritsma, and

Cardozo, 51 Walliser,53 and Smoorenburg56 made systematic studies of the pitch of

inharmonic complex tones by having subjects adjust a parameter of a comparison sound,

either the missing fundamental of a harmonic tone complex or the frequency of a simple

tone (Walliser 5 3 ), until the inharmonic test sound and the comparison sound seemed to

be tuned to the same note. They found systematic relationships between the stimulus

frequencies of the inharmonic complex and the adjustable parameter of the comparison

sound, presumably reflecting its note value or musical pitch. These relationships have

been discussed as the first and second effects of inharmonic frequency shifts. They show

that making a complex stimulus inharmonic by introducing a frequency shift does not

eliminate its musical pitch but merely changes it. They also demonstrate that this pitch

is not determined by frequency difference per se.

In our study of fundamental tracking we have used very different experimental pro-

cedures from the matching procedures used by these authors. Despite our departure

from earlier procedures, we believe that our investigations involved the same phenom-

enon as theirs. This belief is further supported by the results of the following experi-

ments.
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6.2 EXPERIMENT 15

A matching experiment was performed in which a two-note melody A-B was matched

to another melody A-X. A and B were harmonic two-tone complexes with fixed har-

monic numbers of 4 and 5. X had two simple tones with a spectral difference of 200 Hz.

The fundamental of B, f, was set equal to one of the seven frequencies at 5-Hz steps

in the range 185-215 Hz, and fA, the fundamental of A, was always a full tone below

that of B (that is, a frequency ratio of 8/9). Stimuli were presented at sound pres-

sure levels of 40 and 60 dB as indicated in the graphs; the paradigm is illustrated

in Fig. 17. The subject had continuous control over the frequency f, the lower of the

_A I - I I I X I
500 250 time (ms)

(a)

/A I f/f
4 5 4 5 fl f2

f2
=

f +200 Hz

(b)

(c)

Fig. 17. Experimental paradigm used in Experiment 15.
(a) Time envelope of the stimulus.
(b) Spectral composition of stimulus components.
(c) Fundamental frequencies for tone complexes

A and B.

two partials of the complex tone X; the higher frequency component, f2 , was always

200 Hz larger than fl. Only one subject (A. H.) participated in this experiment; he

aurally matched the intervals of A-X and A-B by adjusting the frequencies of X. Three

sets of data were obtained, each point representing 2 settings. Two of the sets were

for monotic stimulus presentation and the third for dichotic conditions in which the stim-

ulus partials were presented to different ears. The data are shown in Fig. 18. All

three sets of data can be described in a first approximation by straight lines drawn

through the harmonic frequencies fl = 200n Hz and fB = 200 Hz, with a slope of /n.
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Fig. 18. (a) Results of the A B A X musical-interval matching experiment
using the paradigm shown in Fig. 17. Tones were presented
monotically at 60 dB SPL. Data are roughly described by
straight lines having a slope of 1/n. Subject A. H.

(b and c) Stimulus tones presented monotically and dichotically at
40 dB SPL. Otherwise the same as in (a). Subject A. H.

We judged that more than two replications would be required for a more precise descrip-

tion of the data than a first approximation; the first approximation, however, provides

sufficient detail for present purposes.

6.3 EXPERIMENT 16

In Experiment 15 the harmonic numbers of the reference stimulus (B) were kept the

same while the inharmonic complex X was derived from harmonic situations with various

values of the harmonic number n. It was seen that the relation between inharmonic
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frequency shift away from a harmonic position and the fundamental of a harmonic com-

parison complex tone is roughly linear with a slope dependent on n, the harmonic number

of the complex tone from which the inharmonic stimulus is derived. The slope, however,

could also depend on the harmonic number of the complex reference tone. Therefore

an experiment was performed similar to Experiment 15, but always starting the com-

plex X from the harmonic situation fl = 600 Hz, f 2 = 800 Hz. The harmonic number n

of the complexes A and B were varied systematically from 2 to 8 (both being the

same), and for each value a set of matching data was obtained using the same values

for fA and fB as those shown in Fig. 17. Only monotic data were taken for one subject

(A. H.); data points, representing 2 settings each, are given in Fig. 19. A straight line

220

210

·- 200

190

180

X n=2

o 3

o 4

a 5

* 6

+ 7

V 8

V 0-

)

600

X

Fig. 19. Results of the A B A X musical-interval matching experiment
varying the harmonic numbers for A and B. Stimuli were pre-
sented monotically at 40 dB SPL. f2 = fl + 200 Hz. Subject A. H.

is drawn through the point fl = 600 Hz, fB = 200 Hz, with a slope of 1/3, 3 being the

harmonic number of the lower partial of X. (The data for downward shifts appear to

fit better with a (dashed) line of slope 1/3. 5, corresponding to the average harmonic

number of X. This detail was not further investigated.)

6.4 EXPERIMENT 17

The results of Experiments 15 and 16 demonstrate a systematic relationship between

the stimulus frequencies of an inharmonic tone complex and the missing fundamental of

a harmonic complex. We have shown that harmonic tone complexes have a well-defined

36



100

80

40

20

0

O

A

0 2 4 6 8

Fig. 20. Effects of inharmonic frequency on interval identification performance
of 2 subjects. The graph indicates performance for the random-frequency
paradigm predicted by the model explained in Appendix II.

musical pitch; that is, a sequence of harmonic sounds can be perceived as a melody.

Another experiment was undertaken to show directly that inharmonic tone complexes

can also define a clearly perceptible melody when the empirical relationships described

above are employed to control the amount of inharmonic frequency shift.

The basic experimental paradigm was the same as that in Experiments 6-9. Two

subjects were asked to identify 8 musical intervals ranging from a major third upward

to a major third downward. Notes were represented by two-tone complexes, presented

monotically at sound pressure levels of 50 dB for Subject A. H. and 40 dB for Sub-

ject N. H. Harmonic numbers were chosen randomly for each note over a range of 3.

In addition, an inharmonic frequency shift was introduced for both stimulus frequencies

in the following way. For the first note a random frequency shift, positive or negative,

was chosen with a maximum of one-fourth of the fundamental frequency; then the empir-

ical relations described in Fig. 18 (slope = l/n) were used to compute the required fre-

quency shift for the second note that would leave the musical interval unaltered.

Figure 20 shows the results of this experiment. It also shows results from a similar

interval identification test wherein the amounts of inharmonic frequency shift were

chosen randomly and independently for each note. The solid line in this figure repre-

sents expected performance with independent shifts calculated on the basis of some sim-

ple assumptions which are explained in Appendix II.

6. 5 DISCUSSION

To our knowledge, all studies dealing with the pitch of inharmonic tone complexes

have employed paradigms of direct comparison; that is, an inharmonic sound whose pitch
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was being investigated was directly matched to a harmonic reference sound whose pitch

was presumed to be known. In our experiments we used a different paradigm: (i) to

simulate musical behavior more closely; (ii) because we found that successive notes

evoked in the subjects a sense of musical interval and provided a context for the fea-

ture of each sound that was being contrasted, and (iii) to minimize the opportunities for

behavioral responses that are directly correlated with matching of individual partials.

In spite of these differences in procedure, our experimental findings are in good

agreement with those of other investigators. Moreover, our experiments show that sim-

ilar behavior is obtained with dichotically presented two-tone stimuli. This is further

evidence for a common central tracking mechanism that operates similarly for monotic

or dichotic stimuli.

No pronounced "second effects" were found in either monotic or dichotic experi-

ments; the results of Experiment 15 can be fitted by straight lines having a slope of

I/n, as illustrated in Fig. 18. Other investigators have called this the "first effect."

The reason why we did not find a clear " second effect" - a consistent deviation from

such straight lines - is probably that we used values of n for which both stimulus par-

tials were behaviorally resolvable; when higher values of n are chosen, the central

processor may be forced to operate only on those neural signals derived from peripher-

ally resolved aural combination tones that occur only with monotic presentations. The

subject found the task very difficult for larger values of n, especially under dichotic

stimulus conditions. Perhaps different subjects would reveal different amounts of

"second effect."

The data from Experiment 16 can be fitted reasonably well by two lines; deviations

can be easily accounted for by the small number of trials associated with each data

point. The values of the slopes are consistent with results from Experiment 15 and

correspond approximately to the "first effect." The result that the pitch matches do

not depend on the harmonic numbers of the (harmonic) reference stimuli is consistent

with earlier findings (Sections II and III) that the sensation of a melody played by har-

monic tone complexes is not destroyed or altered when different harmonic numbers are

chosen from one note to the next.

Experiment 17 shows directly that, as far as musical behavior is concerned, inhar-

monic two-tone stimuli are equivalent to harmonic stimuli over a considerable range

of inharmonic frequency shift. Beyond this range ambiguities may arise (Schouten and

others 5 1 ). The results of many other investigations, including our Experiment 15, also

indicate that for frequency shifts larger than approximately one-fourth of the fundamental

frequency, there are at least two fundamental values of a reference stimulus with which

such inharmonic sounds can be associated. When frequency shift does not exceed this

range, however, inharmonic two-tone stimuli can be associated unambiguously with a

specific musical note. According to our limited data on this matter, the relation between

stimulus frequencies and musical note is adequately described by the "first effect," pro-

vided that the harmonic numbers and intensities are not too high. This relation is
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illustrated in Fig. 18, or can be described equivalently as "that subharmonic of the lower

frequency component which is closest to the difference frequency" (Walliser 53). Devia-

tions from these simple rules would be expected on the basis of our own findings (Sec-

tion III) and those of others (Smoorenburg,56 Ritsma 55) that combination tones extend

the range of harmonic numbers that are effective in communicating musical pitch. Thus,

if the "first effect" or " subharmonic" rules are applied to combination tones, we would

predict a "second effect"; that is, the pitch-match data would be described by a line with

a reciprocal slope value that is lower than the harmonic number of the lowest stimulus

partial.

In Experiment 17 the reason why the subject' s performance for independent inhar-

monic frequency shifts was worse than predicted by a simple model may be that the

subject did not use an optimal strategy; not much training was given for this experi-

ment. The slightly less than perfect performance for the case in which frequency shifts

were controlled by known empirical relations can easily be explained by the additional

subjective difficulty of having to identify musical intervals that did not all begin with the

same note, and hence were in a constantly roving key.

The conclusions that we draw from the work described in this section are the fol-

lowing.

1. Despite differences in experimental procedure, there is enough evidence that

our studies of fundamental tracking behavior and the work of many other investigators

on "periodicity pitch" or "residue pitch" all reflect the same basic phenomenon which

is mediated by a central neural mechanism.

2. Inharmonic tone complexes do have a definite musical value, provided that cer-

tain conditions are satisfied. This value is approximated by what has been called the

"first effect" of inharmonic frequency shift.

3. The frequently reported "second effect" is of secondary importance and is a con-

sequence of the fact that the central mechanism operates only on signals derived from

those stimulus partials or aural combination tones that can be resolved behaviorally.

Thus the second effect reflects mechanisms that are peripheral to the central processor

of musical pitch, and are therefore of no direct relevance in investigating the latter

mechanism. The fact that similar bounds on harmonic number apply both when stimulus

partials are presented monotically and dichotically suggests that behavioral resolution

is dependent on more than just cochlear mechanisms.
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VII. SENSITIVITY OF FUNDAMENTAL TRACKING

7. 1 INTRODUCTION

Experiments 1-17 have demonstrated some general tendencies and quantitative

boundaries in fundamental tracking behavior under several stimulus conditions. On the

basis of these findings we have been able to exclude some possible concepts or models

of auditory information processing, but we are still far from proposing a unique alterna-

tive model. To develop and test such a model, it would be invaluable to have a set of

data on the sensitivity of the system to be modeled.

A conventional procedure for studying sensitivity is the two-alternative forced-choice

method in which a subject is presented with one of two possible stimuli that differ only

in the value of the parameter whose sensitivity is being studied. The subject is

instructed to tell which of these two stimuli was presented in a given trial, and his per-

formance is measured as a function of the difference in value of that particular param-

eter between the two stimuli.

We could imagine such an experiment to measure the auditory system's sensitivity

in fundamental tracking. The stimuli would be two-tone complexes, which would be suc-

cessive random harmonics of the fundamental frequencies f 0 and f 0 + Af0 . Correct iden-

tification as a function of Af0 could then be measured with fundamental frequency,

harmonic number, number of harmonics, and intensity as experimental parameters.

There are some pitfalls in such a procedure, however. In contrast with the identifica-

tion experiments the two alternatives in a sensitivity experiment can contain partials that

are either nearly coincident or are very nearly related by ratios of small integers. Dis-

crimination of deviations from unisons and small integral ratios is not difficult for

trained musicians (Houtsma62 ). Therefore we must be especially cautious in guarding

against discrimination merely on the basis of individual partials.

Walliser53 measured sensitivity for the missing fundamental of highpass-filtered

pulse trains and compared the results with sensitivity data for simple tones. He con-

cluded that the former bears little relation to the sensitivity for frequencies equal to

the missing fundamental, but can be predicted from the frequency sensitivity data at the

individual partials. We could argue that this indicates that the musical pitch sensation

corresponding to the fundamental is derived from the sensation of partials, but it seems

much simpler to assume that subjects base their decisions directly on the sensation of

partials, without paying attention to or perhaps even hearing the musical pitch.

7. 2 EXPERIMENT 18

To show that this interpretation is not mere speculation, a control experiment was

performed. A subject was presented with a sequence of two-tone complexes having

fundamentals of f0 and f0 + Af0, or in reverse order. The lower harmonic number was

randomly chosen between 2 and 4 for each tone complex, with the condition that no
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identical harmonic numbers would be chosen in succession in a given trial. Stimuli were

presented monotically at a 50-dB sound pressure level. The subject was instructed to

try to identify the order of presentation in each trial; feedback was provided after each

answer. Percentage correct response was measured in runs of 50 trials for decreasing

values of Afo, and the value corresponding to a 75% correct response level was defined

as the "just noticeable difference" (JND). Figure 21 shows such JND's as a function

of f0 Next, similar runs of 50 trials were taken for values of Af0 equal to the JND at

the various values for f, but this time with the partials presented sequentially, as in

Experiment 4. The scores for these runs are also indicated in Fig. 21. The fact that
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Fig. 21. Just noticeable difference in fundamental frequency
measured in a two-interval, two-alternative forced-
choice discrimination paradigm. The curve repre-
sents a 75% correct performance level for simul-
taneous presentation of harmonics. The percentages
indicate performance levels for time sequential pre-
sentation of harmonics.

over a large range of f0 the scores are not significantly different from 75% suggests

strongly that also in the first part, where both partials were presented simultaneously,

decisions were probably based on information coming directly from the partials. The

possibility that fundamental tracking exists even when the two partials are presented in

time sequence, as in the second part of this experiment, is ruled out by the results of

Experiment 4.

It seems possible, at least in principle, to extract sensitivity information from the

data presented in Section III, given that the limitations in performance are imposed
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largely by the noisiness of a postulated fundamental percept. It has been shown experi-

mentally that an eight-alternative forced-choice identification paradigm for musical

intervals does enable a subject to score perfectly under certain stimulus conditions (see

the test experiment with square waves and Experiments 6-10 for low values of n), which

suggests that simple memory limitations are not relevant (Miller 77). The paradigm

effectively prevents a subject from tracking the fundamental merely on the basis of

his recognition of individual partials (see Experiment 4). A simple decision model

will be explained and employed to transform identification performance data into a

single model parameter that may represent the underlying variance of the fundamen-

tal percept. At present, this model cannot be justified as being more than a data-

reduction scheme. Further work will be required to investigate its theoretical

value.

7.3 DECISION MODEL AND DATA REDUCTION

The model is a special case of Thurstone's Comparative Judgment law, 7 8 ' 79 and has

been developed and applied to intensity perception by Durlach and Braida.80 After a few

more assumptions to make the model more specific, it is defined by the following

axioms:

1. Each stimulus presentation, Si , leads to a particular value of a decision random

variable X on a unidimensional continuum, called the decision axis.

2. The observer locates N+1 criteria, -oo = C C <C = o on the decision

axis.

3. The observer responds R n only when Cn-l < X < C .

4. The conditional probability density function, P(X/S), is Gaussian with mean

I(S i ) = k log f, where f0 is the fundamental frequency of the complex stimulus Si and
2

variance x (independent of i and constant throughout the experiment).

5. The criteria C i are placed in such a way that the average correct score will be

maximized.

This model makes certain predictions which can be tested experimentally. Some

tests were performed, but thus far the data are not sufficient to make a firm statement

about the applicability of any of the axioms mentioned above. Until enough data are

available to confirm the general applicability of the model, it is important to realize

that the model should be considered as a transformation on the empirical results of pre-

viously described experiments, and be very cautious when attaching any theoretical
2

meaning to the results of the transformation, the model variance . Two comments

with respect to the model assumptions should be made. First, the assumption in

axiom 4 that P(X/S i) is Gaussian is made largely for mathematical convenience. Pres-

ent work in progress in our Laboratory suggests that the transformation from average

percentage correct response to model variance, which is all that we are interested in

for present purposes, is rather insensitive to the precise shape of the density func-

tion P(X/Si). The extent to which this would be true when the density functions are
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multimodal, reflecting the ambiguity often encountered with complex tones (Schouten and

others 51), is still unknown. Second, in axiom 5 the effect of noisy or biased criteria

would be a change in the relation between average percentage correct response and model

variance. As long as the average bias and criterion noise do not change too much with

signal parameters like fundamental frequency or harmonic number, the result will be

that all computed values for the model variance will be affected equally, thereby changing

only the absolute levels, but leaving relative behavior unchanged.

This model is illustrated in Fig. 22. All densities are Gaussian and have equal vari-
2

ance cr . Since the means are proportional to the log of the fundamental frequencies,

and only the second note, f , in the sequence f, f contains relevant information on

each given trial, and these eight notes have the values illustrated in Fig. 4a, it follows

P(X/S 1) P(X/S 8 )

( 1) C (58 )
C1 C

Fig. 22. Illustrating the decision model.

that the distances between successive means are equal, except for a doubled distance

between (S 4 ) and i(S 5 ) (a full-tone frequency ratio is exactly the square of a semitone

ratio in the equally tempered scale). It can also be shown that in order to maximize the

average correct score, criteria should be placed at the points where successive densities

intersect, or equivalently, halfway between adjacent means.

The average percentage correct response, Pc, is then given by

Pc = Pr (R 1/S 1) Pr Pr (S1 ) Pr (S . .. +Pr (R8 /S 8) Pr (S8) (1)

Since all stimuli are equally likely to occur in a given trial, we can write

C1 P(/S 8d 100
P = C P(X/S) dX + P(X/S2 ) dX + + P(X/ 8)dX. (2)

1 C7

By referring to Fig. 22, this expression can be written

1 1 1
c 4A 1 + 2A2 +4 A 3'

where

43

------------------ -------- I _ �-L---�� 11·II�------I Il·-X_



[I(S 1 ) + (S 2) -2C S 2 x s
A =SC1 'P(x ) dX = 2 exp dX

_(S) - (S ) 1 y2

2 e 2 dY A(d)'e =2 d (4)

with

1 y2
d' and 4(X) = e dY.

A2 = 1 - 2(1-4(d'/2)). (5)

A3 = 1 - (1-~(d'/2)) - (1-p(d')). (6)

From (3) and (6) it follows that

P = 1. 5(d'/2) + 0. 25(d') - 0. 75. , (7)
c

This function is illustrated in Fig. 23; it transforms the experimentally observed per-

formance level into a model sensitivity index, d', from which the model variance

can be computed:

_I(Si+ 1 ) - (Si ) k log (fi+1/fi)
d' = = for i # 4. (8)

By assuming that the frequency ratio fi+l /fi is an equally tempered semitone for

i 4, instead of the natural intervals that were actually used, we accepted a negli-

gible error as the price for greatly simplified computations. Taking the logarithm

to the base 2, and choosing k = 1200, the standard deviation, , will be expressed

in cents, and is given by

12
1200 log 2 100

a = (9)=? d' d' 

For every point on the performance graphs in Section III we can now compute

the corresponding model variance. Instead of doing this for each subject and each

individual experiment, we assumed that the results of the low-intensity monotic and

dichotic and of the 50-dB SPL dichotic experiments could be considered essentially

identical. Therefore "average" performance contours were plotted for each subject,

averaged over Experiments 6, 7, and 9, by taking the average n for each given
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Fig. 23. Relation between model sensitivity, d', and average
performance, Pc, in an eight-alternative identifica-

tion paradigm as described in Section III.

combination of f0 and performance level (see Fig. 24). From these contours the

function r-(n, f0 ) was computed for each of three subjects, using the relations (7) and

(9). These functions are plotted in Figs. 25 and 26 for constant ii (horizontal cuts

through Fig. 24) and constant f0 (vertical cuts) in logarithmic coordinates, with the

product Tff0 as independent variable. They represent the model standard deviation

in cents at the fundamental frequency f 0 as a function of the average stimulus fre-

quency. Figure 26 suggests that the standard deviation can be described by the com-

pact expression

ff(n,f o) = H[G(f 0)-if0 ], (10)

where G(f 0 ) is the horizontal intercept function, and H[X] the characteristic curve.

H[X] was determined empirically by overlaying the plots of Fig. 26 for all funda-

mental frequencies and all subjects, and fitting a curve by eye. The result is shown

in Fig. 27 and is well described by two straight lines with slopes 2. 3 and 5. 7,

respectively.

The inverses of the horizontal intercepts, I(f 0 ) = reciprocal of abscissa for f =

100 and fundamental f in Fig. 26, are plotted in Fig. 28 for each subject. Since

H(1) = 100 by definition (Fig. 27), we require G(f 0 ) = I(f 0 ). I(f 0 ) can be fitted with

the general form
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Fig. 26. Model standard deviation vs
average stimulus frequency for
constant f0 . (a) Subject N.H.
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Dashed curve is a two-piece linear approximation.
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Horizontal intercept function I(f0 )

for 3 subjects taken from Fig. 26.

Fig. 29.

The function G(f 0 ) for y6 = 1. 5 and several val-

ues of 6.
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A(ff 3 )

G(f 0 ) 1.5 (11)
0

as shown in Fig. 29. Particular values for the parameters A and fc are indicated in

Fig. 28 for each subject.

Summarizing, we now have the following compact description of r, the model stan-

dard deviation:

r(n, f 0 ) = H AnfO = HfA( ) 5], (12)

where

H[X] = 100 X 2 3 for X < 

= 100 X 5 7 for X 1

and fc and f0 are expressed in kHz.

We can test how much information was destroyed by this data-reduction procedure

by computing Pc for various combinations of ii and f0 , using (7), (9), and (12), and com-

paring the results directly with the experimental results of Section III. Figure 30 shows

that the original data can be reproduced quite well from expression (12), which ensures

that (12) gives a reasonable description of the data.

By taking derivatives of (12) with respect to n and f0 , we can show that or(n, f0 ) has

a minimum, and hence Pc is maximum for n = 0 and f0 = fc/ fi

7.4 RELATION TO FREQUENCY SENSITIVITY FOR SIMPLE TONES

Now we shall consider whether the model variance which was computed from results

of experiments with complex tones bears any relation to the sensation variance for

simple tones. If f0 is the missing fundamental of a complex sound, and f1 and f2 are

the frequencies of two successive partials, and if we assume that each partial leads to

random decision variables, X1 and X 2 , respectively, which are independent and have

Gaussian densities with means proportional to frequency (not log frequency), then the

least mean-square error estimate of the fundamental f0 from the observed variables X 1

and X 2 is approximately given by

X0 = X2 - X 1

[Note: We have neglected the improvement in the estimate that can be derived in

principle from the a priori information that X 2 and X1 are successive harmonics.]

The variances of X 1 and X 2 are known from several experiments on differential
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sensitivity for frequency (Shower and Biddulph,81 Koester,82 Harris 8 3 ). Approximating

these data by a constant Weber fraction, Af/f = C, and noticing that for a two-

alternative, two-interval discrimination paradigm Af = X and Af2 = rX when dis-

crimination performance is 75% correct, we can compute the variance of X0 and hence

predict performance for Experiments 6-10, under the assumption that the decision model

applies. For any combination of n and f 0 on a frequency decision axis we have

X0 = (Cnf 0 )2 + (C(n+l)f 0 )2 Hz. (13)

Converting back to a log-frequency axis, and expressing the standard deviation in cents,

we have

= 1200 log 2 f cents. (14)

From expression (14) the expected performance can be computed by using expressions

(7) and (9).

Figure 31 shows the computed standard deviation at f, expressed in cents, as

a function of the product nf0 for several values of n. A Weber fraction of 0. 002

was chosen, which is consistent with the available frequency discrimination data,

at least for frequencies somewhere between 0. 5 kHz and 5 kHz. Figure 31 should

be compared with Fig. 25. A similar plot for constant f0 is shown in Fig. 32,

which should be compared with Fig. 26. Finally, predicted equal performance con-

tours are plotted in Fig. 33, which should be compared with Fig. 24.

From these comparisons it is evident that the predicted variances are generally

much smaller than those actually measured, and that both behave quite differently

as a function of the partial frequency f.0 Equivalently, predicted performance

generally is much better than was actually observed. There are several possible

reasons for this discrepancy. First, as we have mentioned, it is quite possible

that the standard deviations presented in Figs. 25 and 26 are merely arbitrary

transformations on performance data and do not have a psychophysical meaning,

the general applicability of the proposed decision model being the crucial issue.

In this case there is no reason why they should be consistent with variances pre-

dicted from optimal processing of simple tones. Second, if it can be shown that

the decision model is generally applicable and that the computed model variance

can be regarded as representing the variance for the missing fundamental, it is

still possible that the process of deriving the fundamental from successive par-

tials is not optimal. In this case the measured variance will always be larger

than that obtained by optimal processing, which would definitely be consistent with

the findings presented here.
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7.5 SUMMARY

Preliminary steps were taken toward a quantitative characterization of the limits

in the precision of the mechanism responsible for fundamental tracking. Experimental

evidence has been given that conventional two-alternative discrimination experiments

may allow the subject to operate in a mode that is irrelevant to fundamental tracking. A

preliminary attempt was made to extract information on the precision, or sensitivity,

of the fundamental tracking mechanism by assuming that the performance in identifying

musical intervals is limited only by the sensitivity to single notes. Because of the num-

ber of untested assumptions that were made, we emphasized that the derived sensi-

tivity measure may have little theoretical meaning beyond being a transformation of our

one set of nonredundant data; that is, the decision model used for this transformation

may not generalize to other stimulus conditions. Finally, we examined the question of

whether the limits on musical-interval identification could be attributed to limitations

in discriminating the frequency of simple tones, and found that this is not possible

because predicted performance is superior to actual performance and both bear different

relations to the stimulus parameters.
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VIII. CONCLUSION

The object of our study has been the perception of musical intervals. It is evident,

however, that the object is closely related to, and, as a matter of fact, is just a dif-

ferent approach to, what has often been described as the perception of musical pitch. The

word "pitch" was used in this report in the context of musical operations, in a man-

ner similar to that used by musicians all the time without apparently causing much con-

fusion. Indeed, the design of each of our experiments incorporated an operational

conception of the words "melody" and "pitch":

"A melody sensation is the subjective correlate of a sequence of musical sounds cor-

responding to notes on a musical scale; its presence or absence is determined by

the consistent recognition of such a sequence" (see Appendix III).

"Musical pitch is the subjective correlate of each of the musical sounds in such a

sequence " (see Appendix III).

Although we regard melody sensation as a sequence of musical pitch sensations, the

question of the pitch of an individual sound never arose. While it is true that a musician

often refers to the pitch of this or that note, he always does this in the context of

other notes, for example, a melody. If an individual sound is taken out of its musical

context, its pitch, that is, the note that one would normally associate it with in a musi-

cal context, is often ambiguous. For example, more than one note value can often be

associated with one complex sound (Schouten, Ritsma, and Cardozo 1). Furthermore,

a subject can attend to different perceived aspects of a sound, and this ability is strongly

influenced by learning (Cross and Lane 66). Psychophysicists who have spent long

hours attending to the sensations evoked by individual spectral components of a sound

may be particularly hard pressed to ascribe one particular musical pitch to an isolated

tone complex as a whole. Helmholtz remarks how difficult it is for musically trained

observers to perform the introspective spectrum analysis that he so admirably trained

himself to do (Helmholtz 9 ). The converse would appear to apply to the ability to hear

"musical pitch." On the other hand, one 's attention to "spectral cues" appears to be

distracted when listening to a sequence of musical sounds. Finally, the ability to assign

notes to single musical sounds depends greatly upon special training and perhaps rare

inherited talent (Bachem,84 Brady85).

Questions concerning the ambiguity in the meaning of pitch can be avoided by inves-

tigating the subject's ability to perform tasks that are musically meaningful, such as

identification of melodies or simple intervals. Performance in these tasks depends on

the subject's ability to "hear" the musical value or note that each sound represents.

Moreover, it is clear that what is being tested is the ability to hear melodies or

intervals; this does not require from the subject any conscious, definitive appreciation

of the musical pitch of each note.

The use of interval recognition to study the pitch of musical sounds is not a new idea.
86

Writing on the sensation of tone, Mach remarked: "The ability to pick out and
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recognize intervals is the first thing required of the student of music who is desirous

of becoming thoroughly familiar with his subject." The key assumption here is that a

certain pitch sensation for each individual sound is a necessary condition for recognizing

a melody. We have shown that in simple comparison paradigms like Experiment 18 a

subject can apparently discriminate between two fundamentals by using the pitch sensa-

tions of single partials which have no fixed relation to the fundamental. In a task

which is less artificial and resembles musical behavior more closely, like the experi-

ments in Sections II and III, pitch sensations of individual partials are not sufficient to

provide the subject with adequate information about a sequence of fundamentals. The

subject appears to require a single sensation, musical pitch, for each successive

sound which he can directly associate with a note of the melody.

Our operational definition of musical pitch in relation to melody necessarily limited

this project to the study of "relative pitch." The phenomenon of "absolute pitch," which

is the ability claimed by certain people for recognizing and identifying the pitch of an

individual sound and placing it on an absolute note scale without the aid of a reference

note, was not considered in this study (Bachem,84 Brady,85 and for an excellent review

of the phenomenon of absolute pitch see Ward87). Clearly, absolute pitch is not a nec-

essary condition for melody recognition. Moreover, it seems that identification

experiments for single notes, employing a subject with genuine absolute pitch, would

have created the same problems as matching experiments of static sounds, namely that

the subject can often choose to pay attention to one of several features in a sound, not

necessarily the one that has the dominant musical relevance.

In Section I we stressed the importance of the auditory system's ability to track

simultaneous melodies in listening to music. Helmholtz was originally criticized for

putting too much emphasis on harmony and not enough on melody in his theory of music.

His response stresses the importance of melody.

"As to my theory of consonance, I must claim it to be a mere sys-
tematisation of observed facts (with the exception of the functions of the
cochlea of the ear, which is moreover an hypothesis that may be entirely
dispensed with). But I consider it a mistake to make the theory of con-
sonance the essential foundation of the theory of music, and I had thought
that this opinion was clearly enough expressed in my book. The essential
basis of music is melody. Harmony has become to Western Europeans
during the last three centuries an essential, and, to our present taste,
indispensable means of strengthening melodic relations, but finely
developed music existed for thousands of years and still exists in ultra-

European nations, without any harmony at all. ,88

The work reported here suggests that Helmholtz' conceptions of consonance and

dissonance require re-evaluation. When several tones in a complex sound bear a

simple harmonic relation to a particular frequency, they will strengthen the sensation

of that frequency, so that the listener can associate a note of that frequency with the

whole complex. This enhancement of a fundamental pitch is weakened when simple

harmonic relations are disturbed, either by the exclusive presence of partials with
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large harmonic numbers or by the presence of inharmonic partials. Although we

investigated this phenomenon under laboratory conditions and not in a concert hall, using

sounds that are very simple compared with sounds produced by conventional musical

instruments, we still believe that our experiments simulated musical behavior suf-

ficiently well to ensure that the reported phenomenon plays a significant role in the prac -

tice of music.

From a converse point of view, Helmholtz's statement implies that dissonance, which

he conceived as being due to beating partials, weakens melodic relations. Our experi-

ments have indicated that indeed melodies played by upper partials only become less

recognizable with increasing harmonic number. This finding appears to be consistent

with Helmholtz' explanation of dissonance as peripheral interference of stimulus tones,

creating beats. Nevertheless, our findings are inconsistent with Helmholtz' theory

because similar failures in melody recognition were found for monoticall-y, as well as

dichotically, presented partials; in the latter case peripheral (cochlear) interference

cannot play a role. They are much more consistent with the following observation by

Mach.

"A tuning fork held before one ear is very feebly heard by the other
ear. If two slightly discordant, beating tuning forks are held in front of
the same ear, the beats are very distinct. But if one of the forks is
placed before one ear, and the other before the other, the beats will be
greatly weakened. Two forks of harmonic interval always sound slightly
rougher before one ear. But the character of the harmony is preserved
when one is placed before one ear. The discord also remains quite per-
ceptable in this experiment. Harmony and discord are, however, not

determined by beats alone. ,,86

Indeed, the close correlation which was established in our experiments between

melody recognition and behavioral resolution of partial frequencies suggests a close

relation between consonance and melodic clarity, or, conversely, between dissonance

and lack of melodic clarity. The behavioral similarity for monotic and dichotic stimulus

conditions indicates, however, that dissonance cannot be contributed to beats alone, but

must have a more central cause.

Introspectively it seems that explaining dissonance by beats is somewhat like fitting

a sensation to a theory rather than the other way around. If we listen to an orchestral

sound comprising many notes that do not have any simple harmonic relations, and are

played by different instruments with complex spectra, there are usually so many tones

beating at different rates that actually no beats at all can be perceived; nevertheless,

the dissonant quality of such a sound is very pronounced. It seems to do more

justice to musical experience to describe a consonant sound as a sound whose com-

ponents converge to one point; they all enhance the perception of the fundamental

note, which is often the bass note. A dissonant sound diverges; there is not any

one note whose perception is being strengthened by other components, which makes

the sound "atonal" or "pitchless," or, in an operational sense, makes it difficult
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for the listener to associate any particular musical note with the sound. This introspec-

tive observation lends further support to the musical relevancu and importance of the

phenomenon that was investigated in this study. Thus partials that are harmonic, suc-

cessive, and of low order are efficient conveyers of musical pitch; therefore, periodic

sounds of low harmonic number are relatively more consonant than those of higher har-

monic number.

Perhaps the most important finding of this investigation is that the phenomenon of

fundamental tracking must be mediated by a central neural mechanism. The results of

dichotic experiments have shown conclusively that all cochlear mechanisms, such as

two-tone inhibition, beats, combination tones, and neural synchrony to the difference

tone are either irrelevant or have secondary importance. Specifically, the "residue the-

ory, " which is entirely based on cochlear interaction, is definitely insufficient, and prob-

ably completely irrelevant in explaining fundamental tracking phenomena. The word

"residue" in this report is always in quotation marks, since we feel that our experi-

ments do not just contradict its definition (Schouten and others 5 1 ) but the very word

itself.

Very little was said specifically about the neural mechanism that mediates fundamen-

tal tracking. Its close connection with behavioral frequency resolution suggests that

neural signals that allow one to recognize simple tones and the missing fundamental

of harmonic complex tones are common in early stages of processing; whether this

means that the sensation of such a missing fundamental is mediated by the sensation of

partials (Terhardt, 8 9 Walliser 5 3 ) is uncertain.

Whatever kind of neural mechanism is postulated, it will operate on neural signals

derived from peripherally resolved tones. It is known that information of the frequency

of such tones is preserved after the neural transformation in the form of the place of

active nerve fibers and, at least for lower frequencies, in the temporal firing patterns

of individual fibers (Kiang 21). Although in this study certain experimental constraints

were found which may turn out to be relevant, such as the mechanism's insensitivity to

the relative phase of partials and its behavior for inharmonic partials, it seems that all

of these constraints could conceivably be met by mechanisms based on either time or

place information. An important simplification for theoretical models is afforded by

the empirical finding that fundamental tracking for dichotically and monotically presented

two-tone stimuli were shown to be essentially identical. Thus we have a stimulus situ-

ation for which descriptive models of the stochastic transformation from stimulus

tone to nerve signal have been developed and tested (Siebert,9 0 Gray, 9 1 Evans, 9 2

Colburn ). For any particular mechanism that we assume to operate on those nerve

signals, whether it is a time or a place mechanism, we can in principle compute a sen-

sitivity because the stochastic nature of the input to such a mechanism is known. Empiri-

cal sensitivity data are thought to be very important in enabling the testing of any

postulated model for fundamental extraction.

The significance of the sensitivity data presented in Section VII depends greatly on
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the general applicability of the decision model. More experiments will have to be under-

taken to find out specifically which of the model assumptions are tenable and which are

not, and we shall have to compute how sensitive the data-reduction procedure is to those

assumptions that are not supported by experimental evidence.

Finally, the results of the experiments discussed in this report have an important

implication for future physiological research. In the past, efforts have been made to

find synchrony effects in the firing patterns of nerve units in the peripheral auditory sys-

tem to the periodicity or missing fundamental of complex input stimuli. It is clear

from the data presented in this report that if any relevant physiological correlates of

the missing fundamental could be found, we would have to look in a more central part of

the auditory nervous system rather than in the periphery. Activity synchronous with dif-

ference tone or missing fundamental, which has been found to exist in the peripheral

auditory system (Kiang, Rose and others9 ) is definitely insufficient to explain, and

is probably of little relevance to the phenomenon of fundamental tracking.
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APPENDIX I

Psychometric Functions for Experiments 6-11 in Sections III and IV

59

I·-CI-_-�-PI �---�IIIII1�-II--� .1.- -1--_�111 1__1�1_ ·I*YII�L-�-I·LC)^·-.II�CI�_I�--··I�-·-�Y �11-·---·-11 11 ^· II -



, 74. . ..

. '-_ I .' I

---i- .'

u.- - --1il

4,'-;-

4

z

7-7

TT,

4ff

=rr
-;i-

--4-

I i
, 1

%77

: - t -. : -- - --- S. r_, t I _ 
.- - : 1 -..

0' -,
. °!. -Q --

-=1

-CL

tztt

,,

7-r7_ _0

--- -

,_

-a-
'-r _

!> -

0)r.1z
C

GJ

2ia
x
w

o
U)0

cli

1-

h-l+-L41- , '-.

-+T! I- t|' t . IT' --
~~~~~~~~~~4 - :-'i 

".~_4 '4 z --; --

1~~ tI r __-tf4-Žrr II I _

-·----I-

42114-1T

'XtlI
-

-"-
II 

v l l t X l l * 4-

titd-
-t' A

---4-t2Lt

Trl-.'i I

Fi
TTi L

t

IE

tt

-.-H-

IrL
i 

w : tt

f

4

47rr

i

1-

-5'

-=:

0-
-0-

I

-4-

i2F

--- ·t
4. 4 -

7-tt

i#'

... 

'iz5

)

4-0.

,-

C.a

24
En

m
0

O1

I

1 

[2

I

I
t

ii~9

-rF171
i i
HiF

: ,h-4

1;

.TW

0

Cl
0

r)I .
a
4
0

_
U}

la
"I

C.)

5-105
'U,

V0l0
IJ m

I 0
i

-:fi

p
I

Le

81!t

Ii

i

4 TW 't ±IzL

r-rr
+

_ UL -_6t - -_-· 1 tL LOf T; -- i- -r~~~~~~~~~TL l- -
1 -+-t- r I + it --- $ ~ 0 + | t T-| --T I I-1 4 -

Hid.

60

.
- -- s- I I.r ?r i. . n !:1 i . s , ._ .-

.- l --?--"--. r
---�-- --- ;_,.l 

____ . _t__ t___ I
_ L.:----

L . -i . i -�--( I ; | I ; ; _ . i I:1- 
*- -3

.7-

TT-

I
7 T -7 -- :

iL
TE

4

-1T

�EI I-1 -
-L:�7-1

�-s

I
I-

1-4+

-I--

�9=

., .. _

I;

-eE

L--

F --

---l

.-- I.~

-tl7

LE -.

--f-

--7-

1-24

r~

I

r - - I I - . ,rr-: -!-e 

i
I it

-
-

l-F

_ d dLiI .4IIIII I

I I

,BTl --1 T4

-

FF
I
a

9T

a

!

F~

FF-5��l -�H+�4+H4+Nl'

_,-'.

+t~i ,, t-"r-'- 4 !7.
1

l
41

rT-1 r7;vs

I

k-7- ,....r

I .- 
. -- --: ----- t- -

'I ,- .-

I -7- r - rT

'I.-

- -

7 -. 
I1 F

- 0- i ' 
Z-=
-e-i

i

i-i-t

F --- F. T-



:7.LA

I-N

-a, t

tit
II

felt

..=A-
F9t

-r;t

±4t-

7

I

t

i-

B-

t-I:
i-

cc

CO

0 r-0a0._I

o

oC

r;
ur
P9

o

.-rt

+

t:

I .

fI
E:

Ci+ 1 '

H +
t-1 ' 

TTT

Ie

I I

FFi

i3,wj

#TM11111'_~

-b2 I

I-4~~~LL~ _Xga~ _ gS : Xg
. :t S 0 0 tt gt,0 X m -t

61

4+ -

·- ±l

I44-

I I-

, 

±tl
.ty -
mars1

T -

T14

rei

_ _ .

rI

p

II-

tTep

H-

7

H ''l[i]

,

x
', i 

C. i-i 

.S 1M

;11

ri-
0 ,
'- T

fr+ft-htfttt

11

:4

H-

1p
4-

4+

c1- 41

I A 4+ t -M

4-

I

I

., ~ ~ ~ ~ -

r 
z ' 

n-·- ' rr
. ....... - - ! ''.. L77L jl- -- -: rrc rl , 77- - -- · · ·

,Tt

I

.1 II ; - Rl,-
...Nr

i

+i-t
t17
1T

SF

'F�F

t4lP 'l 
;1 l ' I I i i F

t

Hi
-t t 

111

Ei

trr 4t T:4 -

t L.-
I .e

Tr i

LI".

+rir

r;r
igi

i. 4 H e FEr~ffii314
i i I I i j i itX t .

17; = I I I 1

B;111! , i . r r. i. . .I . I I . I
I I t LA-"

I . I I I . I I

±H±fth

i*H±ft
±tt±tt±i
#t�t� J

W

;i. i 11 I I liLI

_ . . - . . .. . . a i .

P i~"t~ttt

~ttt rrtt TT~-T~T~-l- ;'T~iQI ' 1 ' I 1 ,
I·I

_~- ·- -- . - . __ .= .... ...rTI

- -I-- --
.. -1-~~~~~~~~_114~ ~ ---

1

3

R

41-Vl-,i
11

- 1 ; T , .- I I I .'- 

17- i~~~~

, ;- 

... . . . . .. . l l 

IIII

4-H

91

TT1-I--I'

"'

_4;l 

�M_ T -,Ins: -: -1.kfiUL kni itn'

flfC'Tmr-

Hc 44-

l. r
I N

Se

It7~I ~~I~~~~~~4



_ .... I _ ___,__
-TT

t T- 
_rU. I;- 

_. _ __-.
_._ _r I--e: 

.. T_,=7 .i.>-i -- -t i ft;tL 
- T --:7 ,, _, 

- . T- - -- --r-
+ ,

-it - IIt

4 - 77
777
_H4

'FFT, .-r _ i I1. ' LI � ·· � �L . ; _----__-- _ f -- . i t--i--t ;,
I ;, I I 1 ,i I Ii

, .
. _i - ^- 1-- '~I

I k--:i
.--I -- -

--- 7 -i - _ _ i - _r r H4
4-1±4r I: r ,

--
1t:r

r XI-

1; +j
iT,_ . I _

;I -i -
.- --

-a _
1- - 7 1i i -

. I: --
.- 1._

-:I''

t _ _ - -e - e~
t. ._ 

It e;¢zit -
:_ - 1 i:., : j ,- +

j__ _ - r..I--;-
- i-
--lr -

u
-R:- A

C
·r er

't
, ., -+.

.-1
---I

t

_ __

4--t-

-H +

Trr

ri-
:-t- 7kp

i ,Ee

, I ; 

1-i

IiLt
+r7. 

::;I
s

Til

Ati

, .$

i t

#r,_H7

I I

I 1

:PI~

-r-
�i t·-
cC--
+rr ---r-

kl ;rr
+1- --

iii
: :T't

ti-

!i ;

I

-I I _- I !

;l

-k
1--t- g

i .

I ,4 

:t

--e

i

n

oL-·

�

r

---

r-
t
I---
It

rt'II, -
i-, T
H_

WT
qL1

tt

:17,rl�=I·

T�+T 1

i.L�i��S�-i+t

5-rt'ii
.-�c�TCI

;r:

-ju

+rL
�cC

�I

L

I

I

I

LLr -·- -f�' '-' -+r

LL Ii-- I
· :�L1 .-.-

--

-ii

rir
--

f
---

i :-i

I;-

C!-
· ' '

L ' 1q ' ' I ', I ,.! '

I
§, ' -1i1-.

j iF-r- __t-l_ ,-rmti I __ i :
~ L

EA T"S i; I =-

UL 1i~ 1 , T TI ;_n _1 __
_ :_ _

F~H 1 1 ~-H4Lp
4 H -~~~~~Ir r 1a ', . 1 1, I, 1 I

I l I I I

i' .itIt fil IN- r- ll.

-r-4-- ,-- -

i.-i---tI F---
r--,tl-- Fg-

, W---- |_- - r IL

lai ·-

It - t 
I rt, I T ~ ,r' T , -- I -, ' |-, I - i i , , I i I I ; , I I zi I T i Tr-- T { -I 
- -- * ! I: --I - I ---:I- - J ._ !--2 .- A -1 N I -, LL I - I o_ AI L I -III 1 1 III iI�-c- - �'

.-vX I , - w I | I s
i ·- _ _-

I IIIIiI- 
s H±t-ffiu f

-I-,r- r, -

I - " N; ~~· -
1-1

ii ".P~ ~ "11 t

0 - r i ....
-ci- <4- 7T-7+-

'1-5~~~~~~~~~~~~~~~~~~~~~~~j1
-. ! !7 t , t~~~~~~~~~~~~~~~~.,,LL -. [ . i- .-,I - !_I -i-,- r_ , ' 7

-- . .~4 - i"! 1TT U_+C'

_ L

I

T

i

'

I
#$

II

Ir, 

I. .

1|11

: -1-
.L

II

... =--t----- b X1 gi S tL 1t

r.~
- ' ' -±

I -t
E; X~--i--1

i _ ,Irrl

Y t O :I I.. I 0 T 1 , 1 '

-I- " 7;4 , -· : St----'
-I L--

-; q------ -
-! ~-- ----I- , TI -- + r

---,. - -1 _T :, > I
-liTFr i ,,~~E- · .,,,, - it

...

It

i, tl
,, , J . i,

, , I _ , , _ , . ._ ., .j , ,,, { S ~ 

zC)

-C

:

x

0)
mm
W

O

C,
Nn

0:3

ra* 4

P.
x

W

o

o

U)

mo._1
0FT

I r

rr 1
17-

;L4-pi-- -rT

mrr I Tr I II I:
i 

-4ZUA_ jll~ -- _LL
rI r111:I I11X 1 -_!

I

It

L14i i 

I+

1i i

IIIILI Il r 

z
9

ia
.

iva
x

tSc)
o

o

o
hi0 

-4-{:
i ·i .. 

I , -1L l _] _-- ,-

H-HH -:q'N:
! ii .n .

I

I _ _s J - _ I _
, , , , 7 -II0 -ri <_1 - :-- . --: I- F: .

62

.- --.. " ,r I
I- . .-i--

-I -i
.7 .. .:

._ 1 -- 

I ..

I I- . f.e

ti Vm
r;-: ti-ec

=.: --t;
-

t ,T +> -
-I4

:-#JLt"lt
- +i::

,_I -
_ _

¢
c)

wo

' mSfRi [: : I :. .- :
,,- 

I -Z-L

-1 ,-I-r- - T' I, I

-_- _f I ---=-
--- id-, -t. of-1;

__ .

~ ] , I { I I ' Y'- -7 T-r -1T FT r i- I i -I



.

- - E
..... I , I:;: i ' -- _> 1- I i i ho TCI�4~ 17F:.I ... ., f . T

leFllli -n-d 1
i i i

~

li l ] t;: 1 Ll ILL�··li t-tH N r
LI · C--·tt

i I -1I I .I I ~ I ' lc ti I ;, l ! , i

A_ I ' I!rI--
Ill··l·Y�·1Ii

____: I':
- ;-- i- - : I I , LI

F_

i-

I

I

S

1. 

-4- -

_ r

I 

I 
I I 

tt�l

1.
Ir

I I
I l i I 

E I- i I
!r I 

t
t+,.
#_l_~i

-t

,:tt

. r-
tr

Iti1
rCf

:,Z

tlT

1-1-
-t--q

.4 ±
LT

U-.:4

Ir

Lii

t-=-
L±t~
I+tH_

ft
...

t-

i,,,1t 1 111 1 

-:F

., -il

S~:

i
1I

i

-1
lI 1 ! ,

I
. .. . .. . .I . � i

i . I I
I I I I -t:l 1 . I i I -

±f± _114-1+4-1-___ , .I . I I , I t7n i

1 , t �

I! .. I

r, . , ' i-

I t- - - i

I I1 t , - I_7 - _ _ _
T-- i L fll~i I _::. I _LL-

1- . I . ' I 3 I.

, ,; ' -. '- t-
I-I- 
-

I-: -bi+ +FZ, ,2:W_ X..-~ E;--.-. .- ._ -! _ , + t

--;-·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T
·Ti- o J -x II~~~~~~~~~H F

_

, .---

I

I

- I I I . . I I

I I I I I IIL 

-

I F
I

, , 1
I 
IrI

L | 

Ir 
TE

II

I,
I:II

ITT

I
l l I 

t ri

IIH

I

I

11i Iq 

ll lT 111 
EHlHtI~l

- r 1l F Ir I

L7 : I , ! I 7 ,

-LT L ! !

'TTr'- F r I I I

0

a)

K
o

>4
wt:C.)

.-I

04,

&sX

.

I I 
*_e

-r 

oo

.
a)

K

x

W

C

._,

o

En

V)

m

t-Tti

f#

r .

I --

Er;E
9E;
F'..c

M_ -

.tH-ttr,5_

Ir,

_
7:r-

Ki:i

S .

'-7 7.7
r

rLI 1

E_-

ri -H-1

_C.T;

I I I ; I I I I I L � I I

f

-

rv rT1 l l re?
LI I F, N, ;t,+t'-~

I

lt- H-H-

i

-T r it F 4 ;SI , ' -2 t - 1--' _ 4-rP

-... t' F_ _ I I II . .

-;-!- ' t;- 
i I t I-TH . IC44TE_"Mi~llllll

63

�114LITE_,E2_T_�T.t�_F ,__ -- -_T-, 1�'S" 7 _. -V_
-nFr;-:H -E

,1 ---

1I 

.tS:rl
r j
-L T

i WTTTT
r'A:

_ tI
tt-t

L_

-

-E-_ _
., .--.-

-i __4

-: -, =-
- t -_ 

-I .

-

O _

CD

.E

Q)
P -

(a

u

X :

M

C;-

0

4
.4C)
Q

04. n: m

: 0

: Li,
Pc

m
t nt ot 

_+ H4- H -HH+t

.H-r _,_1
El~t

I-r:r

.-ff

t-t rr I

# T--7, 'k_.

-- -:-it -
HH 4-L ' - t ' -?

-? nt-. -
L SI ._. 1 1_! ' §_L ' 8 :,: | ! | ' I Lt----s - <-'- -t- i i i S I S ! i-e-t---\- t-'- -t- i j , a, '; t _o
--- -lk: -Ml --I --I ' T_ - '- T I � i

t- --t 't

:r4J_
I .
...I

l- .
-~ ..... , I

! < _ . . .�-:- �--
I - . 1

-
-



Z L .; [.11- . | ' I i ' ! . I -TV-- ;. . . I
I :

,_ 1

J. -. ..

' . .. .- 
-I- 

r 

I , i
' I *: 4- ,_ " .:1

_.I -
.. ...i 7-1_ i-._ '

IZ ,- [ ::~~~~~~~~7

l ___ _. , ., _,_____ .1. ,:_I_____
J ' , T j__ --] .... ',r

L.~--..~.~----..:-----_ _--- -- ---I.----_- _,_

L

1
-

- i
IL..--.--.',--.------ r- - '^t

.

* 
: ..._ -- - I

i i

I

I.d
_ tl--I 11-;

t . . 1 ......... I I l

! . i -'-L ' | ' L - | -- - 1--- --I

l L. l I I A

I -- I ,:1 1 i - I i l l -1
l _, .! ' -|-;-- |-: . -|; ! l

H-L

r+ _r, _7

11��

L_� __

-Et __

: , 1
7

_�_j .-

L�__Pj

-x 

L' -

---

* I_

;, L

'r7

0-

�?7, -r--,1 1
I _.

ft-
7_t

_;-F
:-"'-7

:. .-

-U1

_[T
-14-
I --

J -4
i -II-
-t-
-!--p

-1

it -I

-i-!-
-4-

, Ittr

-ZI:

_;

._;

.

i j_

,

_L

.__

, .,

.'1

_

Tr '�

;-r,

._ L,
rFr
_L__

' !_

-! rr

, _

,-t-

_ _ _

t;-

;-J r-
z
.,-t- �

!_l t

,, ._ j

_,_

,,,*

.+
-I 1 

* t t-,

X
lgt �l

�_rt

I i

l- t-r
1: - --

EE

-

i _

4-;--I

-E

-1

LQ~E
b.L

-1 .L

! 77

ri .

I 

I ,_ j,

'v~
!-Li

FT-r't

11_

:1 7~ -,a

H~~? 'o=

..'- --, --9;_ -..=
, _N �+I �:-, 0 L

7- .I -__�T_ I-
- I - X. -T,-- --,-�"_: t -1 J-1- L �_ -,

T- -7
:r-:, -T . .- __ I N _ ! I ' l l l I ! I, , , , I ; ; ; I ; , , I I i !

1)

0

tLt} I I I ., - -

XtH-.-t-L-,-I--l-. .TI

aW- I i'-' ''-I ' 1-" '-1 

ete+Wi1-i L
tgT L 4 - I ' -' -' 1 ' ' -

WW .$,., 1
iL .E+trt tz.- ;-l-.-, l -i-l-r F- -i-l-i- --1\--T-- -I -� -�

41X-
1--W0-t-- 'S-;'-!-l .t-tl--;-lF- .-1-- ' 1 -�-
-L2- ' -1: 1 | 1---t1g: ---- {--' -t

_l ! ' 1 '_ ' ,. 1 _' ' I ,1 _ .F

t_ -I , Ft s , I I ., .

| =|X- L

W 1 _- i ' | . 1 . ! . t . . . | . .
_ ! l _ ;-!-l -;--- ' -l ' | = � -1 --

-� ' I �' � � ' 1 ' � � I ' ' ' � ' I � � I � ' �
eL.4 .__ | ____ | ._.._ | _ _ .|__ _ _

--t''--1 !----1---1-
*---1-:-,--1 :--:k :-:-l -- -1 -::-.
H.- I :-:1-<1---
* I * } .... | . t . | \ .l

= 1 - 1 -I -I ri;K-
-I' 'I- s 'i ->

-L"-1-:'1 t- I t

, ---- 1-;-

1- 

71 L. 

I_.

I7oi .

. ...........

LM .-,

: }11 -|> | -->

illtr|e '

m-tHeW
A,- ,4.. -grLl. L'-1.e

*- l |- ! | |-¢F+e. '
8. § . . _ | ._; .t .__L

;1 1 ., I, '

-- e--X1 'I_ i.l--�T- -W--E

xF'-IXIt
. I > ,ie l. tl i't

| r|, t- § �
,S,- :-1 - ;- I L- LI j ,-

: | .- -X | - - | , t
[ I t _,. WL 1-; � -I I��'
^ �- 1 t-r 1 -

>-t 1 <
-. -I -- ---I---i-- l -- -

* 'i T...+:.
I . I . . I .

* W n . .

' . I ' ' ' 'li :-'W- : . .I-i

1..] ..1
7. - . 6 C� a1-� � . el <
.-.. . . .. 0 `�"

I--- I

- __4__t__, - -_ ...

-i-H--F-��
i 1: -: I - '- I -: -
| I -I .. i...
.1__.] t _F._

-1 .
r-r, -

-H-1, -

iE

_r, T

:�t-

-

-4 -. -, -

, I I

L4
-, L
F__-,4

-,.-L-L

k7�

- - 4: < I "

_;, _!.WT?,_ ~_, ? ' . ','- M

| d' 't mi ' r'- ~ 1 ' - t-' ~-;_ , %JT:

1S9--,ij -

,_ - -1 ,

.- . _ 

- 1 1-

- T -
i I

ifC- Lj . ~:-'E d----] :-J - - l --- :- I--: I-- -i-'L

-i' - :; 1 i -I- ~ -:: IL ,:l~ . '1 . i J'i. Lldt '_'.: .-_,:d'::i;l:-1-._
;-' ' ' ii :r I--'--! -':':'i 4-L-L:,';:

_ , _ , _ W~~~l _ kI- .-- _,--_ ------- _ ,L--' -I- I --- _- .___ L -_L--1---

Fr| �t�.-tI r-i�i�
_
t''-r-:

tJ~ .. .-
I _j i, -

H _,
_` , .

I _4I -

t'--:'

.-t _',t

_ ' '-T-

ot -='__

l

: L -

.
.__.

-_

4

ii

I rr

I

, L-

_r ,i 

,I I

I-

-r_

-1 Li-
L n _ 

b- : 1 I ,rt-
I W
1. 1~

f!i:
-I _, 

_ 

1ST,T- tr _-r I J i-
J-z_,_

L-

t J, -. 41H - _F -1
I_ _,

I-; 1: __ _ -- _.
L- 4 1: 

_ .--

r.1-- -

_ _

ISI - --I: : pLL;_i E r I- ----

I 

:SI

*_
Q)

(1
$a.
x

,t

m.

q

---i
-L..; �L iE D- r_.-,L

; .i- "I-.1

4-f'.

2
.1

1

Q d71 ,.1-t .-: -iW - | _L LWE-f
F! 4-- -i.- , , ! i 4

64

:' --,7- _ 

is' '' |- -I . l-t .: --' - ! --- --' -:- ? i L-t_ :/i.. I -' I .... ' .. ' -XI~? i - :',--'- - - t

0 ..-

ICAt .-
r~ 

C-4 _.

-I
,_,-l

~-Ni--r-- -.-k, - r- 1 j - v- 't---'~I!-~bF-; i i--i-
I,,-r' All--l & -l led

:FFF .-it_. _0 Ii. - -, ,T 'TFi-i-[-T Il~_q i._ I -'1-l 4l L I ,-rl i , - ! --

H1-1 I-f I--

I -tI ;-' i
--i- I



_ 
_

r- 

r-r-r

-

l

tr-t-
__

l
__

. 1 s F -- '!1 ; : 1 I I J . I I, '4-.,
�-r-'

_._I i-'i
i-~ ,l' --- :tt . I I :-.--

- -
_ _

1:_ _.T -, -,

I ',_ 
I I

0\

C

.(1)
K
w

:.):X

rl
_.1>

O

C

- ;z

m

a

V Ir

-- -- ·-r 

I-J
i

7

7

¥

t

II

i

- .-L

:tt-

{i'

44-

mt

I 

I ;-Lr

qlr

EfT

i l¢ 

-7

-1

7-

71-

-7

T

I

t-
t-- ;--"
r_. _. +,

p- -t.
t t+.

I ,4
:i

lt~_
t~l
,,

., .t t |. 

171 

44-

lt-t

tt.

iT,

1-t-

-iT!4-1

±t

I

."I

:-

._ZL
+t

EV

17LT

w

.:

i
%--

mII

_~_F2 

£

T

T-7

.--

lil

qq_

1

1r

I

-rt-
r .

Tr_-L-, L

r-

Tr

--I-

-E--:-

7_:'

_! _~Z

_r7

=--O
--Q'__ -

.p:.r.
3- _+

I('-- 

,T- 1
-lT

7

-7
-7

-7

-T

-7
-1

-i

+- ro .
': _

i, %]
--

, T
: i --·

·--
, 

+lf d

l

![I;

.I - -
f l

-

- H-TiCI-~-Crrtl-rl t t

' i-T

t - - t t-t,- ---4, j ___._ t- _ tb

±9F fH r-Ht -_-- _- -- LI -- > r < - , - T -' l _ , r ' } -

.i I I . I. . I I I . .

-t tr_ ':, 
~ '

-i - T
... . '1. ......... ; I ] ;~

Ln-L -L..N -_.t; , I -,IL A:_LL! I I -L-- iLI- = L J _I~ L I I I I I I 

7 7 t pt_ E < _i .T __ !
'=_L ... .. _= ..... , - *...._ |-' = '-~' ~'= T- "" ",f tll$ t li I >b-fi~ t< ., . ,I, _ )$$ S <,$!<;-E ,-rq- -

1~~~~~~-''~.. .; -"" :=FIR~~~~~~~~~~~-1--'-?~t~: ~
104~~~~~~' ~" '~.~

4

!HI

!J

I 

~t -mpt 

-j
:l

I
t; T

t-- lt, I lt-t-+I , H

ri / -' - i i [-A - _. L, ` .L I
i "'F~~. 
I~ ~ ! I_J_ L --Lq--+ J'-t

C

444 64 41ii ti 
-

_ i 

tl ' -x,~e .r r0
-F~~~~

- ', r - -- - 'rI l

-im!._L F! !.......',
'11 -F L Il

t~lil ,T ~ q l
-t J- , l ¢ "-! 

+..,-~L . ~-Il
-t~{'-{, 'F ~ T I

-t,~!F-j-' ~ 

-·~~~~~~,_ a~~c,,L ,'- 

I I _LL.-I- ,,
I ' , , ~ I l

,, ,, o-~'
1 ~ i ll

I "T I ' : -
i ; 1-.~.1 ._4~- r-? -

(n
--I+ :

tt-lt- I i i 1 Tt

~7t7__E -r

t:- - -HF L_ rr _F ~ ~ ~lr~ i-
~-~-~J,-

_ ..u b-rr*r .-- ''-- - T 7 --

-r ,- --.1 -

-^ - - , .- --

l---I.

it-

4-

-- e -- I_
-t -t---

i-
i.

I-

7 , _

·;-
- "-7--L

- -t--
__

r-- rh-
Irl

-,? ',EI.I

1-r-

· _

-7-

,+ _ 

7r

u
ot

C)

cn

o

C)I

, . . I i

!l11
IL IF -TT Fr

V.,_44 +ii

- iT T T

_L
r--

Vl

l I I i 
I

H+-_
1 1 -I , -

t- -t-tH-i

H, -t---~FL-- i _-- t , + , , i - ' - 4 i I 
L- - : ' 'I : t... | 

L

' --- ~ 4 --- 
-

+-T I I

65

t-t-

- 1

r --. ~__

.: 1--. p- 
[- C)I .,
t- x

LI'z3

,tT

1 I-.-

4L
F

tc-

4- ! 4I4 J-Ht

$; , I4
It-,-. -F4 +H- _.IIL

4A -, i r - ; Tod-- , -

1I t r , :
I , 7 , I I _ , _ *- - r 1 <L lU l; -L I I a-| -f Hi F1T-4 t R! 

r



r:,

-FiT

·--- r' L

T.-

* ,rI--

_ I ¥ ,
__ , 1 .i3TV*_

'- 1 ....~'Tr-i

, -- -- -.-A- F;7. 0- 

-I. ~ s w-s;-- r i..h -
r · ] ; r t

THI--JH I f+

A~~~~~
-tA--r---'-\ 9

- m :WW~~~~~~91:-
I44-1d12 - R._-1447 A'J-4 N

L-

O-.

w

(d

c

O)

o

S

5-4

0

0

rt4i4 7r _ _ t :: Ct -; -t 1 t K- t

L ._ --

t4-1-T

t

i

I

I

I

i

I1

_ _J I _AL<- - : H ,

4-..

-

4
r4

t

'

E
ig 

4Li...t

r4

.I j

4.+-

7 %_1 
L . _

I 

H-LI-iC
444-' 44--
HEL
--

-'+-

*F4t

$-F I
1I III

-
4
4

H, -t

N124
iO
LIOC

11

3 I

T .I I

4-'--
LIr-

- -

Lr;

.- --

iri

--it-.i 

tc

'+1z

.,--1

E l

itt

_ -

._ , -
L- 

i=i

-C

Q)W

¢)

C.

OS

0mC

tCl

i1

44+h.. I

'*i

.1

4-

I i

- 1 I
I I 

I l l i i i !

1

+1t

Fi- IA LiF TTIJ- LtLL1v-L

:_1i- - i- L. ; -F-"i-_. F " 1 i_ li7 i , ~-7

66

.-

~_

; I
i ,' ' 

. .I

:4

c)
Q

.0

i-r

t -T
-t--

TT

_-i.

i::L

-r-

' 
r ,

19-

iit i , , 
?' t-l -·--·~~~~~

it- - - :T- -

Lo i-8- 'a

U~ r 
-----'1_ C----3 | | Ir --_ --7-7 _ 4 1�1 i. =7 7I -ecC

--
-74- ^ I - ee t I- = ~ 7=7

i+..

_r -.

4itf
4-r-A, i .

±irr

-Lt

_ -t I_.- :.
_:S.:

___

r
17

J , i ~d
[ I .,~ I I ~ p1 1I I

; . ;i1I1 1 lI . i i 77'L 

L

-rl-t
ITT
I

T�i

i -

I : ''ItIlil __RT��T;4T -j- E±H±i±.
T�
Z�� ""r' Lr
anyL- -1 ,- r ,tI ,t tc :1

t#r

ftl-

I 

i I 
II . .'

;t

! I 'i .

_- - , I , I TTcI-N- !-. -1 ' 'e.l '- N- - Z-; I !NI -- d+. - C 11- f- --
Ella OH_ ' 1 3: , : I . . 1: 1 ' ' i %<.s ''I -I I i i : I : ' ' 1: 1 ' . : I ' tt ' * -I I ;I 'I P s ;| , n 

.",~44-,-' . 4~4~4 ' ' ~eit tt

IL L._�d I --- -,El

------

i I -f g r,,;, - -- , ---1I_~ __._ . , I__ g e __ _- -T

; _ ,@. . ..._ -·
.[, l 1 l 1~ : 1 4_ _ 

."_ ..L .. ._ I

.1
I-

t

I

tie_ III_ -; - i-v -t 
.Ir- !. . I ' _

1 - - - L-1~-
I

,.,
··� c-_ ._ F t . I ._, I[_ i 

I

T
'

i

44

+Ir

·i ----
_ 1 _,-- _

+F -.. +Pu

,--:

-r+

%

N. --r I it H , , I iI 

. t-
l , <

I , - - -1
.4 - 4

1;i4
IT7

-r+-
Hn-T

II T-

i-, _ k [
Ii



_- 
1 |

I I = I
r _'_l I; .__t_e+7

-·
I

-

. . _ .
_ .--

I-
r
I

I
I.

-T-

7 i-r
__

ri

t--

I l

Lli

i

4-

i;Z

1

rL

M1' -
7

i

L

Ii

ITr-
_, 

iLL

iIL

-i 

i=F

-I

:Ii:l

t-
7T1 

i
I . . . I

, I I i r

i 111 1

HITI II
I i ~j~

I I 1 I 

. . .. ..l l l ' ' ' ' I -' !

i-

7-·

I

7
.

T~r

. I

itt,,

' i_

7-
4-rl

I

,TN--,L ftr

-,tt

HI4
LLt-11

r-,

i)i
r I-F-

F-Tr

+-4

iL;I

H, ;

-

tit
rI

L4

t#

r 3

:-

:t-:

-r � 
t-t.- T ::

-:iill
111 JL!

EJh~1

' . . ,~

dLti

L!~

T -,

P-:;

1 1

fii

1--.

t--

.ii

tT
-tc

i i
�'�'�T�

- .
-77

Ltt

ki

iti

E

E

r

i

ittt

I

2

ULC

xr

4--

-r-

rr

-TT

7-4

-t
-.

I-te-

r i ,I I

i

I

r-
I _
-

i1-

t -r

rrf

--rTv 

717-r

EE1

_ =1

I, _

r--

L-r-

tr-

'7

-L
4+T
i e'

!

-i-

4: l

F ._~-_--

r ,r
ci, It .,

ii

-tl-

-H4

r-,

_ .L

r- 

.-

Itt:lEr
II, -

F114

-ITT

E

-re

-6u

-T,7

H-+

Lt:~.I

ir

I ..

Li
3

-ii

:_i

4-`-
Li

41,

iMs'
1, t-1

L LA- ! ' -C -I:! ! ! t- --L t'

Wi'

ITL1
E
1'7

T-,

4-l

ili ;
-ii T. I-

TIA-
-i LS

;4-.Ht 

_- T

I ; - - 4:

._' ., m

t- -t

Tr· .__ I t-r'---j

Liii -E � +11 - ± 1-1?,±M:E N\-, I . t
I I i - - ,, . l . I .

.
.

t- ,, t --il -tf-- t -�LL

--!

-i

Et 
-r-
I;:

i

-L

_z_
. -_.

'_t
l-

I

_ .-.

, I. 
.- I -

i- 1-. -.

1 1 t- -,-
I L_~4

-- :--l 

ll- - · ) --

·-̀ tf?- --1-r

·-r
L

if7
t'i !
+

,-T

rr
.rf

i .
.

-L- l t; :r 
,,; '- ; 

i 

t,-^ tj
-t otl T --

-.- L -- N : 

-1r

I -L'-d -

C·:J : ,-.
V.L--~

·--- 1-·f·1--t-

i- i-�
Li t tiCI.:

--c: Ii-�-

i:
· t·i::-r-

L

4

- . . I . 1-:; - I -t- .. . T

'--- zH '~ti l '' '-i- - ' ' + -, ,~ 4 t~ t- W1 1 i i

~-T~' ' '~ - -,'~71-r
~'
,
~ ' -t -

, -t~'~ .~-~?.' J I I l-l- t i i i i ] i i . I i j T jI I ItI' 'rr-' : - :-4 .. =.- i , t,---~h il"'-it- ; 
l~ ' = ' , I ' i i i ' , ' , ! j I I I I1: -H- 1

T-~~~~r

-~ L- - ~_ ' ' ~ ... +t?--
I

nl '1 i iIt !J., T -t F,- r 7-- t --

4-14a 7 7~~~~~~~~~~~-

ii~~~~~~~~~n

4tr-% -:;t:- .... ... e ,. : r.... .| .... ?rr- - -, |-- .:- -
r~ .~ ;:~ -. - 'C: '-:-:--4:-,-. -."'---:', ' -- t L' i ;; ! ; I ; L ' I ;.1 1: T I 7 . I T _r Fr -T I I I I I [ _ II .' !l,, _ I II1 l , I

. . I .. .

-I- ------·--- I--I- (� -·----�)-----�--�^r--r-·r�urr--· _r-.u-·--l-L-l---^ . _ . .~- -

I -

7-i-
-- I

f-l-

.- r 

6.--

.... :- t r - .t- . - _1

I- ._.- . - . I -r-j -- --! t ::. - I

-a- --

i , ! 

-

-z
-r I

-r-
-,L
%-_.
-:-r 

. .

_ _ _

- . .
-- '4 - -

--- r.- Q)

_- -- I -., --- ; 0
;

* tSE-n

- O- - ,---

;,%_ :4_~ .--1- - -,;__o. ( __, :f CO :_-- 
-- t .-_, .- q

fQ

- CZ,

T-'

r-

-~4

·I

_7

.=. t::
..

.- I ri
t ___r--iL~ 

=r 7

I-7

--.E

_r

-T-

-4

.T"
1?

_ _ 

t

En

oi
OEn

Cd
tz

tn

oII IXI

En

N

¢
. 4

-m
o

cl)

j
410
z

0

(n

ItftH

i I I I I r

]t t~ tr'iII[ I I I I~~~ I I I·r T ?
-

K¥ T' I [ I i I )
,' L-'t i- -i i-+

67

r - l £

_r

~T i.7~,
, 
t 7t h-
T --T

=tH

Tff _ 

IT-

.t-1,I
-

_

,
a

i 

I-r ;

V tE T ±

-*~T

r~

I 7 -

7it"

-!_

rTF

_
--L

tt-11

-L

-L _

T ~e-;T�l t;-

-L- -_t ...
7 I 1 I

, -i
, I-I'if-_4t -

-T-
,-Ti i"II t4T' .,7 L

-t I
Tt - I 8- , , I .I I , I I ( I I I ·

I i I I I � I I 1 I ? -i I_ L L~ I-- - C ___l; l -t-( I i { f- an I --Lc t7 re



APPENDIX II

Assumptions for the Decision Model

A simple decision model can be described by the following axioms.

1. Each tone complex S is transformed into a unidimensional random decision vari-
2

able P, having a mean P, some small variance , and a unimodal density of arbitrary

shape.

2. For M stimuli, there are M+I criteria partitioning the decision space: -oo =

C0 < C 1 < ... < CM = .

3. Each response is determined by the particular partition in which P is enclosed

in a given trial.

Applying this model to Experiment 17, we can make the following statements.

1. Only the second sound of each stimulus contains relevant information; hence,

we can disregard the first sound.

2. Because of the random frequency shift, each stimulus category contains many pos -

sible complex tones, whose equivalent note or pitch values are given by the "first effect"

relation AN = Af/n, where Af is the amount of inharmonic frequency shift, and n is the

harmonic number (which can be found by dividing a particular stimulus frequency by the

difference frequency and then taking the closent integer). Since the amount of random fre-

quency shift was limited to ±f 0 /4, where f0 is the underlying fundamental of the first note,

the stimulus input can be modeled as a random variable N, having a uniform distribution

of width f 0 /2n and a mean determined by the fundamental of the second note.

If we assume that the sensation variance a- is negligible compared with the variance

of N, then the conditional probability density functions of P under the different stimulus

conditions will be uniform, have equal width (f 0 /Zn), and means that are approximately

f0 /16 apart (semitone ratio), except for the distance between means for stimuli 4 and 5,

which will be f0 /8 (full-tone ratio).

Finally, let us assume that the criteria C 1 through C7 are placed in such a way that

average percentage correct response is maximized; this means that they are located

anywhere in the overlapping region of two adjacent density functions.

The average percentage correct responses, Pc, is then given by

Pc = Pr [P<C1 /S 1 ] Pr [S1] + Pr [C 1 <P<C2 /S 2 ] Pr [S2]

+... + Pr [P C 7 /S 8 ] Pr [S8.

This expression has to be evaluated in 3 different regions:

a. n 8. The distance between the means for all density functions is larger than

(or equal to) twice the standard deviation. There is no overlap, and hence the aver-

age score, Pc' equals 1.

b. 4 n 8. All density functions overlap, except those for stimuli 4 and 5. The
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average score is given by

= (1+ (f/3ZXZn/fo)) +(f/16XZn/f/f) + 4 (1 +(fo/32Xn/fo))

= (3n+8)/3 2.

c. n -4. All densities overlap. The average score, Pc, is given by

c = (1 +(fo/32XZn/f2 ) (f / 16X2n/fo) + ( (fo/32+f/16X2n/ fo )

= 1/8 + n/8.

Summarizing, we have

P = 1 for n 8
c

= (3n+8)/32 for 4 n -< 8

= 1/8 + n/8 for n 4.

In this computation, we assumed merely for mathematical convenience that the cri-

teria were placed symmetrically between the means. The same results will be obtained

for the less restricted condition which was stated earlier. The piecewise linear rela-

tion between Pc and n is shown in Fig. 21, where n is replaced with n, the average

harmonic number randomly chosen over a range of three.
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APPENDIX III

Definitions

The meanings of some musical terms in this report are somewhat different from

standard definitions. To avoid confusion and to make the meaning of various terms

clear, we have adopted the following definitions.

A note is a musical symbol, representing a unique fundamental frequency; it is

equivalent to a number, and the time information, normally also contained in a musical

note, is disregarded.

A melody is a sequence of notes. The term is used in a very wide sense and dis-

tinctions among melody, series or note sequence, often made by musicians, are dis-

regarded.

A note scale is an ordered set of notes, having a defined one-to-one relationship

with an ordered set of frequencies which has ratio properties.

A musical sound is the acoustical representation of a note; it is a periodic or quasi-

periodic sound whose fundamental frequency equals that designated by the note.

A melody sensation is the subjective correlate of a sequence of musical sounds cor-

responding to notes on a musical scale.

Musical pitch is the subjective correlate of each of the musical sounds in a melody.
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