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Abstract This article generalizes Ian Quinn’s recent harmonic characterization of pitch-class sets in equal tem-
pered spaces to chords drawn from continuous pitch and pitch-class spaces. Using the Fourier transform, chords 
of any real-valued pitches or pitch classes are represented by their spectra and located in a harmonic space of all 
possible chord spectra. Euclidean and angular distance metrics defined on chord spectra correlate strongly with 
common interval-based similarity measures such as IcVSIM and ANGLE. Thus, we can approximate these com-
mon measures of harmonic similarity in continuous environments, applying the corresponding harmonic intuitions 
to all possible chords of pitches and pitch classes in all possible tuning systems. This Fourier-based approach 
to harmony is used to compare the properties of twelve-note chords in Witold Lutosławski and Elliot Carter, to 
analyze the opening section of Gérard Grisey’s Partiels, and to investigate the structural properties underlying the 
Z-relation (part of ongoing research with Rachel Hall).

1. Introduction

Suppose we wish to compare sonorities in the just intonation systems of  
Harry Partch and Lou Harrison, the various equal tempered systems of Eas-
ley Blackwood, the spectral music of Tristan Murail and Gérard Grisey, or 
the more freely composed nontempered work of György Ligeti and others. 
In other words, we wish to compare chords drawn from continuous pitch or 
pitch-class space rather than some form of discrete tuning. Traditional similar-
ity measures based on interval vectors or subset embedding are of little help 
for the simple reason that continuous spaces contain an infinite number of 
intervals. For example, “C-major triads” drawn from twelve-tone equal tem-
perament, {0, 4, 7}, and just intonation, {0, 12log2−54 , 12log2−32 } < {0, 3.86, 7.02}, 
would be judged by traditional measures as maximally dissimilar, because they 
contain no shared intervals.1 Naturally, we would like a means of comparing 
these sonorities that corresponds to our perception of these chords as being 
quite similar and, in a sense, equally deserving of the label “C-major triad.”

277

Journal of Music Theory 51:2, Fall 2007

DOI 10.1215/00222909-2009-004 © 2009 by Yale University

1 The most natural unit of distance in continuous pitch-
class space is the octave, so the interval of an octave is 1, 
a perfect fifth is 7/12, and so forth. However, given readers’ 
familiarity with intervals measured as multiples of a semi-
tone, throughout this article the unit of distance in pitch 

and pitch-class spaces will be the semitone. Thus, the pitch 
class 12log2−54 is approximately 3.86 semitones “higher” than 
CΩ or 14 cents “lower” than EΩ, the pitch class 12log2−32 is 
approximately 2 cents “higher” than GΩ, and so forth.
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One way to compare the two major triads is to measure the smoothness 
of the voice leading between them, according to some voice-leading metric.2

The smoothest voice leading consists of one voice (the third) moving 14/100 
of a semitone from 4 to 3.86 and another (the fifth) moving by only 2/100 of 
a semitone from 7 to 7.02, while the root is held as a common tone. By any 
reasonable metric, this voice leading is extremely smooth, and the two triads 
should be very close within any voice-leading space.
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Obviously, such minuscule perturbations of a chord will have only a lim-
ited effect on its harmonic content. That is, chords that are very close in a 
voice-leading space will tend to be close in a harmonic space, as well. (Indeed, 
in the extreme case of infinitesimal voice leading between two chords, the 
distance between these two chords in either a voice-leading or harmonic space 
must also be infinitesimal.) However, the converse is not necessarily true, as 
demonstrated by the three chords shown in Figure 1. although Q and R are 
not related by transposition or inversion, the two chords sound quite similar. 
This similarity is easy to explain: both chords are stacks of perfect fifths with 
one of the fifths divided into a major and a minor third. However, the voice 
leading between Q and R, indicated by lines in Figure 1, is not at all smooth. 
Even allowing for splitting and fusing (in the sense of Straus 2003 and Lewin 
1998) {D4} $ {B3, D4} and {F≥4, a4} $ {a4}, the voice leading requires a total 
of six semitones of motion. Thus, while Q and R should be close in harmonic 
space under any reasonable metric of harmonic distance, these two chords are 
not particularly close in a voice-leading space. Compare the relation between 
chords R and S in which a single voice moves by semitone. Despite the smooth 
voice leading, the two chords sound quite different—certainly more different 
than Q and R.3 In one case, a relatively large voice leading yields harmonically 

Figure 1. Q and R are closer in 

harmonic space than R and S ;  

R and S are closer in voice-leading 

space than Q and R

2 Roeder (1987), Lewin (1997), Cohn (1998), Straus (2003, 
2005), Callender (2004), Tymoczko (2006), Hall and Tymoc-
zko (2007), and Callender, Quinn, and Tymoczko (2008) all 
propose comparing sets on the basis of their distance from 
one another in a voice-leading space.

3 S does not contain an extended stack of fifths, is not a 
subset of a diatonic collection, substitutes an embedded 

augmented triad, {G, B, E≤}, for a major triad, and contains 
two dissonant intervals not in R—interval classes 1 and 6. In 
contrast, Q preserves the stack of perfect fifths, substitutes 
one major triad for another, is a subset of a diatonic collec-
tion, and does not possess a tritone. As pitch-class sets, Q 
and R are considered to be significantly more similar than 
either R and S or Q and S by standard similarity measures, 
including IcVSIM (Isaacson 1990), ISIM2 (Isaacson 1996), 
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similar chords, and in the other a small voice leading yields relatively dissimilar 
harmonic objects. Thus, there is no simple correlation between distances in 
voice-leading and harmonic spaces.4 Though related, these two types of spaces 
are distinct.

In the remainder of this article, I focus exclusively on approaching con-
tinuous harmonic spaces via the Fourier transform—a mathematical tech-
nique for discovering periodicities in a wide range of phenomena.5 Lewin 
(1959) was the first to note the connection between the Fourier transform 
and a chord’s harmonic content, a connection to which he returned very 
briefly in 1987 (103–4) and more fully in 2001. Since David Lewin’s first arti-
cle, other theorists have incorporated this mathematical technique into their 
work, including Vuza (1993), Quinn (2006 and 2007), and amiot (2007). The 
following extension of this work into a continuous domain draws substantially 
upon Ian Quinn’s work, which links Lewin’s work to a variety of approaches 
to chord quality, yielding a well-developed theory of chord prototypes and 
fuzzy harmonic categories. Using the metaphor of “Fourier balances,” Quinn 
employs these mathematical tools in an intuitive manner, such that even those 
with little mathematical background can follow this Fourier-based approach 
to music theory. (Indeed, it is quite possible for one to fully digest his work 
without being aware of the sophisticated mathematical concepts lying just 
beneath the surface.) While Lewin and Quinn are careful to keep the underly-
ing mechanics of the Fourier transform in the background, it will be necessary 
to confront some of the details here, given the inherently more complicated 
nature of continuous versus discrete spaces. However, we will do so only to 
the extent absolutely necessary, and concrete, clarifying examples appear fre-
quently throughout.6

2. The Fourier transform
2.1 Interval cycles

Underlying Quinn’s work with the Fourier transform is a particular means 
of comparing chords with various interval cycles, which provides a kind of 
harmonic blueprint by which we may characterize a chord and compare it to 
others. For example, of the three chords discussed in the introduction, Q and 

ANGLE (Scott and Isaacson 1998), SIM (Morris 1979), and 
SATSIM2 (Buchler 2000). As pitch sets, Q and R are also 
considered to be more similar by PM (Morris 1995) and 
PSATSIM (Buchler 1997), two of the few measures of pitch-
set similarity.

4 Tymoczko 2008 explores the relation between voice-
leading spaces and harmonic spaces based on the Fourier 
transform. See note 17 for further discussion.

5 Most musicians come into contact with the Fourier trans-
form in the context of analyzing or modifying audio. Complex 

sound waves, represented as time-varying changes of inten-
sity, can be transformed into frequency spectra, which can 
then be analyzed and/or modified and converted back into 
sound. A good reference for audio applications of the Fourier 
transform is Smith 2008.

6 My thanks to Michael Buchler, Rachel Hall, Evan Jones, 
Ian Quinn, two anonymous readers for JMT, and especially 
Dmitri Tymoczko, whose insightful and insistent questions 
motivated me to think more deeply about numerous sec-
tions, especially §6.2, and the more general matter of the 
relationship between voice-leading and Fourier spaces.
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R each contain four members belonging to the cycle of perfect fifths { . . . , G3, 
D4, a4, E5, . . . }, while S contains only three members belonging to this cycle. 
Using set intersection as a crude measure of similarity, we could claim that Q 
and R are more similar to this perfect fifths cycle than is S. But what about the 
set U 5 {G3, FΩ4, F≥4, a4, E5}? Though U also has three members belonging 
to the interval cycle in question, is it as similar to this cycle as S, even though 
the latter just misses having four members in the cycle by a single semitone 
(substituting E≤4 for D4)? One of Quinn’s central insights is that the Fourier 
transform provides a means of “fuzzification” of membership in (or similarity 
to) an interval cycle. In the remainder of this section, we get a feel for how 
this works and the musical relevance of such an approach, before delving into 
greater specifics in §3.

By an l-cycle we will mean any set of the form { . . . , x 2 l, x, x 1 l, . . . }. 
The l-cycle that contains 0 will be designated zl 5 { . . . , 2l, 0, l, . . . ,}. Consider 
a set consisting of a single pitch, p, and the interval cycle z1 5 { . . . , 21, 0, 
1, . . . }. How well does p “fit” or “correlate” with this semitone cycle? We might 
interpret the question as asking how “in tune” p is with the twelve-tone equal 
tempered (12-tet) scale containing pitch 0. The closer p is to any integer, the 
more in tune it is, or the better it fits, with the 12-tet scale. In the case that p 
is an integer, then p correlates maximally with z1. The farther p is from any 
integer, the less in tune it is, or the less well it fits, with the 12-tet scale. In the 
case that p is exactly halfway between two consecutive integers (1.5, 2.5, 3.5, 
etc.), then p correlates minimally with z1.

−2 −1 1 2
(p, cos(2πp))

y = cos(2πx)

Figure 2: Correlation of p with ζ1 = {. . . ,−1, 0, 1, . . .} is cos(2πp).
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Figure 3: Correlation of p with ζl = {. . . ,−l, 0, l, . . .} is cos(2πp/l).

−2 −1 1 2
(p, cos(2πp))

(−1, 1) (2, 1)y = cos(2πx)

Figure 4: Correlation of S = −1, p, 2 with ζ1 is 1 + 1 + cos(2πp).
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(−1.5, 1) (−.5, 1) (1.5, 1)y = cos(2π(x + .5))

Figure 5: Correlation of P = {−1.5,−.5, 1.5} with Th(ζ1) is maximized when h = .5; the correlation
for the individual members of P is given by cos(2π(p + h)), p ∈ P.

0 5 15

y = 1

Figure 6: Correlation of P = {0, 5, 15} with a 5-cycle.

4

Figure 2. The correlation of p with z1 5 { . . . , –1, 0, 1, . . . } is cos(2πp)

The situation is represented in Figure 2 by a cosine wave with a period of 
1 representing the correlation of p with z1. The peaks of the cosine wave cor-
respond to the members of the interval cycle (with a correlation of 1), and the 
troughs correspond to values that lie exactly halfway between the members of 
the cycle (with a correlation of 21). For any value of p, the correlation of p with 
z1 is given by cos(2πp).7 It is important not to confuse this cosine wave with the 
interval cycle itself. The interval cycle is a discrete set, while the cosine wave 

7 In principle, we could measure this correlation with a 
number of different periodic functions. For example, we 
could use the triangle wave, which connects the appropri-
ate maxima and minima in a linear fashion. However, as we 

shall see, using the Fourier transform yields deep connec-
tions with existing methods of measuring similarity based 
on interval content.
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is a continuous function of the correlation of pitches with an interval cycle of 
the same period and phase.

We can generalize the situation a bit by considering how well the pitch 
p correlates with the l -cycle containing 0, zl. The situation is represented in 
Figure 3 by a cosine with a period of l representing the correlation of p with 
zl. For any value of p, the correlation of p with zl is given by cos(2πp/l ). The 
closer p is to any multiple of l, the better it fits or correlates with zl ; conversely, 
the farther p is from any multiple of l (or the closer it is to 2l/2, l/2, 3l/2, etc.), 
the worse it fits or correlates with zl.

Generalizing the situation further, we can consider how well a set of 
multiple pitches fits with a given interval cycle by simply adding up the cor-
relations of the individual members with this interval cycle. For example, con-
sider the set S 5 {21, p, 2} and the interval cycle of semitones z1. (again, we 
can interpret the “fit” of S with z1 as an indication of how in tune S is with the 
12-tet scale.) The pitches 21 and 2 each have a correlation of 1 with z1, and, 
as we saw above, the correlation of p with z1 is cos(2πp). So, the total “fit” or 
correlation of S with z1 is 2 1 cos(2πp). The closer p is to an integer, the closer 
this fit for set S is to 3; the farther p is from an integer, the closer this fit is to 
1. (See Figure 4.)

Figure 3. The correlation of p with zl 5 { . . . , –l, 0, l, . . . } is cos(2πp/l)

Figure 4. The correlation of S = {–1, p, 2} with z1  is 1 + 1 + cos(2πp)
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We can also compare a set not only with a given interval cycle, but also 
with all possible transpositions of this cycle. For example, consider the set  
P 5 {21.5, 2.5, 1.5}. The correlation between P and z1 is as low as possible, 
23, since every pitch is as “out of tune” as possible. However, it is clear that 
P is maximally in tune with the 12-tet scale T.5(z1) 5 { . . . , 2.5, .5, 1.5, . . . ), 
the transposition of z1 up (or down) by a quarter tone. The situation is repre-
sented in Figure 5, where the cosine wave has been shifted to the right by .5. 
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Thus, the maximum correlation between P and some transposition of z1 is 3; 
we will say that P has a magnitude of 3 with respect to a 1-cycle. More generally, 
the magnitude of any set with respect to an l-cycle is the maximum correlation 
between the set and Tx(zl) as x varies continuously. Intuitively, we simply slide 
the cosine wave to the right until the sum of the correlations of individual 
pitches with the corresponding interval cycle is maximized. (See §2.3 below.)

2.2 Chord spectra

Figure 5. The correlation of P = {–1.5, –.5, 1.5} with Th (z1) is maximized when h = .5 (mod 1); 

the correlation for individual members of P is given by cos(2π(p + h))

Figure 6. The magnitude of P = {0, 5, 15} with respect to a 5-cycle is 1 + 1 + 1 = 3
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4
Now consider the pitch set P 5 {0, 5, 15} or {C4, F4, E≤5}, which obviously 
belongs to the 5-cycle z5.8 The situation is depicted graphically in Figure 6, 
where the correlation of individual members of P is represented by a cosine 
wave with a period of 5. Since the values of p corresponding to the members of 
P coincide with the crests of the cosine wave, by the reckoning of the preced-
ing section, P has a magnitude of 3 with respect to a 5-cycle. In comparison, P 
correlates less well with 4- and 6-cycles, shown in Figure 7. In the first case, the 
correlations of individual pitches of P with z4 are 1, 0, and 0, yielding a total 
magnitude of only 1. (No other transposition of z4 yields a higher correlation 
with P.) In the second case, the correlations of individual pitches with the 
6-cycle in Figure 7 are .5, 1, and –.5, which also yield a total magnitude of 1. 
(In this case, the sum of the correlations is maximized when the cosine wave of 
period 6 is shifted to the left by 1/6 of a period. See §2.3 below for details.)

8 Throughout this article, pitch sets will be labeled P, Q, R, 
and so forth. The corresponding pitch-class sets generally 
will be labeled PO, QO, RO, and so forth whenever it is unclear 
if a set is of pitches or pitch classes. (The subscript “O” 
indicates the set modulo octave equivalence.) Additionally, 

the term sets as used in this article is synonymous with the 
term multisets. Multisets are unordered sets in which mul-
tiple occurrences of an element are counted separately. For 
example, the multiset {a, a, b} is not the same as {a, b}.
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Since we are working in a continuous space, there is no need to limit our 
investigation to cycles of an integer number of semitones. Using the intuitive 
method outlined above, we can find the magnitude of P with respect to cycles 
of 5.1 semitones, 2π semitones, or x semitones for any value of x. Figure 8 
graphs the magnitude of P with respect to x-cycles as x varies continuously. The 
magnitudes of P with respect to x-cycles for all possible values of x form the 
spectra of P. (For more on chord spectra, including the derivation of graphs 
such as Figure 8, see §3.2.)

Figure 7. The magnitude of P = {0, 5, 15} (a) with respect to a 4-cycle is 1 + 0 + 0 = 1;  

(b) with respect to a 6-cycle, the magnitude is .5 + 1 – .5 = 1

Figure 8. Magnitude of P = {0, 5, 15} with respect to x-cycles
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Figure 7: Correlation of P = {0, 5, 15} with 4- and 6-cycles.

Since we are working in a continuous space, there is no need to limit our investigation to
cycles of an integer number of semitones. Using the intuitive method outlined above, we can
find the magnitude of P with respect to cycles of 5.1 semitones, 2π semitones, or x semitones
for any value of x. Figure 8 graphs the magnitude of P with respect to x-cycles as x varies from
1.5 to 15. (The derivation of graphs such as this will be covered in §3.2.) As expected, since
P correlates maximally with a 5-cycle, there is a peak at x = 5 where the graph is equal to 3.
(Since there are three members of the set and the crest of the cosine wave is 1, no other peak
can be higher than three, and this value is obtained only when the crests of the cosine wave are
perfectly aligned with the impulses. This is the sense in which a set correlates “maximally” with
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There is one other cycle with which any set maximally correlates—the ∞-cycle. A cosine with
an infinitely long period is simply a horizontal line at y = 1, shown in Figure 9. It is clear that this

5

as expected, since P has maximal magnitude with respect to a 5-cycle, 
there is a peak at x 5 5 where the graph is equal to 3. (Since there are three 
members of the set and the crest of the cosine wave is 1, no other peak can 
be higher than 3, and this value is obtained only when the crests of the cosine 
wave are perfectly aligned with values corresponding to the members of the 
set. This is the sense in which a set has maximal magnitude with respect to an 
interval cycle.) There are, however, a number of other peaks, located at x 5 −52 

and x 5 −53 , that are equally high. Since z5 5 { . . . , –5, 0, 5, . . . } is a subset of 
the −52 - cycle { . . . , –5, –−52 , 0, −52 , 5, . . . }, P obviously has maximal magnitude 

(a)

(b)
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with respect to a −52 -cycle. Likewise, since z5 is a subset of the −53 -cycle { . . . , 25, 
2−10

3 , 2−53 , 0, −53 , −
10
3 , 5, . . . }, P will also have maximal magnitude with respect to 

a −53 -cycle. More generally, if a set has maximal magnitude with respect to an 
x-cycle, it will also have maximal magnitude with respect to an −xk  -cycle, where 
k is any integer. Thus, continuing the graph of Figure 8 to smaller values of x, 
there will be identical peaks at x 5 −54 , x 5 −55 5 1, and so on.

line will intersect every impulse representing a member of a set, and that the magnitude of a set
with respect to the ∞-cycle will be equal to the cardinality of the set.

(0, 1) (5, 1) (15, 1)

0 5 15

y = cos(2πx/∞) = 1

Figure 9: Correlation of P = {0, 5, 15} with respect to the ∞-cycle.

There are other (lesser) peaks in the graph of P at x ≈ 3, x ≈ 3 2
3 , and numerous other values for

x. The peak near x = 3 is easy to understand by raising the middle pitch from F to F and noting
that the resulting chord, P = {0, 6, 15}, belongs to a minor-third cycle. The closeness of P and
P in voice-leading space accounts for the relatively strong correlation between P and a 3-cycle as
well as the correlation between P and a 5-cycle. (See Figure 10 for the graph of P.)
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the middle pitch of P from F to E forms a major seventh with E and a major third with C, which is
nearly equal to 3 2

3 semitones. Raising C by 1
3 of a semitone yields P = { 1

3 , 4, 15}, which belongs
to a 3 2

3 -cycle and is graphed in Figure 11. Again, the closeness of P and P in voice-leading space
accounts for the relatively strong peaks near x = 3 2

3 in the graph of P and x = 5 in the graph of P.
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Care must be taken when interpreting these graphs to distinguish between intervals within a
chord and the correlation of this chord with various interval-cycles. For example, since there is

6
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There is one other cycle with respect to which any set has maximal  
magnitude—the `-cycle. a cosine with an infinitely long period is simply a 
horizontal line at y 5 1, shown in Figure 9. It is clear that the magnitude of a 
set with respect to the `-cycle will be equal to the cardinality of the set.

There are other (lesser) peaks in the graph of P at x < 3, x < 3−23 , and 
numerous other values for x. The peak near x 5 3 is easy to understand by rais-
ing the middle pitch from F4 to F≥4 and noting that the resulting chord, P 9 5 {0, 
6, 15}, belongs to a minor-third cycle. The closeness of P and P 9 in voice-leading  
space accounts for the relatively strong magnitude of P with respect to a 
3-cycle as well as the magnitude of P 9 with respect to a 5-cycle. (See Figure 10  
for the graph of P 9.)
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6

The peak at x < 3−23  in Figure 8 is only slightly more complicated. First, 
note that taking every third pitch in a 3−23 - or −11

3 -cycle yields a cycle of major 
sevenths: ( . . . , 0, 3−23 , 7−13 , 11, . . . ). Lowering the middle pitch of P from F4 to 
E4 forms a major seventh with E≤5 and a major third with C4, which is nearly 
equal to 3−23  semitones. raising C4 by −13  of a semitone yields P 0 5 {−13 , 4, 15}, 
which belongs to the 3−23  -cycle { . . . , −13 , 4, 7−23 , . . . } and is graphed in Figure 11.  
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again, the closeness of P and P 0 in voice-leading space accounts for the rela-
tively strong peaks near x 5 3−23  in the graph of P and x 5 5 in the graph of P 0.

Care must be taken when interpreting these graphs to distinguish 
between intervals within a chord and the magnitude of this chord with respect 
to various interval cycles. For example, since there is one minor seventh in P 
and the value of the graph in Figure 8 at x 5 10 is 1, we might be tempted to 
assert an exact correspondence between the two. However, this is not the case, 
as shown by the graph of {0, 5, 10, 15} in Figure 12. The addition of pitch 10 to 
chord P creates a second minor seventh, but the value of the corresponding 
graph at x 5 10 is now zero. This is because the minor sevenths are separated 
by a perfect fourth—an interval that bisects a minor seventh. accordingly, if 
we shift a cosine wave with a period of 10 so that its crests fall on one of the 
minor sevenths, its troughs will fall on the other minor seventh, and the two 
will cancel one another. Some readers may find this lack of a direct correspon-
dence between intervals and magnitudes with respect to interval cycles discon-
certing, but it is precisely this property that allows us to employ an approach 
based on interval content in continuous spaces. as we shall see (particularly 
in §6.3), there is a very strong connection between interval content and the 
Fourier transform.

line will intersect every impulse representing a member of a set, and that the magnitude of a set
with respect to the ∞-cycle will be equal to the cardinality of the set.
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Care must be taken when interpreting these graphs to distinguish between intervals within a
chord and the correlation of this chord with various interval-cycles. For example, since there is
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Figure 11. Magnitude of P0 = {1/3, 4, 15} with respect to x-cycles

one minor seventh in P and the value of the graph in Figure 8 at x = 10 is 1, we might be tempted
to assert an exact correspondence between the two. However, this is not the case as shown by the
graph of {0, 5, 10, 15} in Figure 12. The addition of pitch 10 to chord P creates a second minor
seventh, but the value of the corresponding graph at x = 10 is now zero. This is because the minor
sevenths are separated by a perfect fourth—an interval that bisects a minor seventh. Accordingly,
if we shift a cosine wave with a period of 10 so that its crests fall on one of the minor sevenths,
its troughs will fall on the other minor seventh, and the two will cancel one another. Some readers
may find this lack of a direct correspondence between intervals and interval cycles disconcerting,
but it is precisely this property that allows us to employ an approach based on interval content in
continuous spaces. As we shall see (particularly in §6.3), there is a very strong connection between
interval content and the Fourier transform.

x-cycles

magnitude

10

Figure 12: Magnitude of {0, 5, 10, 15} with respect to x-cycles.

2.2 Transposition and phase

In the previous section we saw that the pitch set P = {0, 5, 15} belongs to a 5-cycle. In particular,
P belongs to the 5-cycle that contains pitch 0, which we will identify as ζ5 = {. . . ,−5, 0, 5, . . .}. In
general, we will identify the l-cycle that contains 0 as ζl = {. . . ,−l, 0, l, . . .}.

Suppose we transpose P up by one semitone. Clearly the resulting set, {1,6,16}, also belongs to
a 5-cycle, but in this case the specific cycle is T1(ζ5). Representing this interval cycle by a cosine
as shown in Figure 13a shows that transposition corresponds to a phase shift. In this case the
shift is by 1/5 of a cycle (the transposition factor divided by the generating interval of an interval
cycle), which yields a phase of 360

5
◦
= 72◦ or 2π/5 radians. (2π radians is equivalent to 360◦. I

will use radians instead of degrees for the remainder of the paper.) Transposing ζ5 by x semitones
corresponds to a shift of x/5 cycles or a phase of 2πx/5. More generally, transposing ζl by x
corresponds to a shift of x

l cycles or a phase of 2πx
l (Figure 13b).

Dividing by the generating interval, l, of an interval cycle as in the previous paragraph is the
same as multiplying by 1

l , which is the interval cycle frequency. The frequency is the number of
cycles per semitone. For example, a semitone spans 1/5 of a 5-cycle and two complete cycles of a
quarter-tone cycle, and thus these cycles have frequencies of 1/5 and 2, respectively. Using z = 1/l
for the frequency, we can rewrite the phase of Tx(ζl) as simply 2πxz.

We can combine the magnitude and phase of a set with respect to a given frequency by vectors
in a two-dimensional plane, where the magnitude corresponds to the length of the vector and the

7

Figure 12. Magnitude of {0, 5, 10, 15} with respect to x-cycles

2.3 Transposition and phase

In §2.1 we measured the correlation of a pitch with zl by a cosine wave with 
a period of l. Suppose we wish to similarly measure the correlation of a pitch 
with the transposition of this interval cycle by x semitones, Tx(zl). In this case, 
the correlation is given by the same cosine wave shifted to the right by x. In other 
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words, transposition of an interval cycle corresponds to a phase shift of the cosine 
wave indicating the correlation of a pitch with the interval cycle. For example, 
consider the correlation of a pitch with the interval cycle T1(z5) 5 { . . . , 1, 
6, 11, . . . }. In this case, correlation with the interval cycle is measured by a 
cosine wave with a period of 5 shifted by 1/5 of a cycle (the transposition factor 
divided by the generating interval of an interval cycle), which yields a phase of 
−5−
3608

    5 728 or 2π/5 radians (Figure 13a). (2π radians is equivalent to 3608. I will 
use radians instead of degrees for the remainder of the article.) Transposing z5

by x semitones corresponds to a shift of the relevant cosine wave by x/5 cycles 
or a phase of 2πx/5. More generally, transposing zl by x corresponds to a shift 
of the relevant cosine wave by x/l cycles or a phase of 2πx/l (Figure 13b).

∠FT1(ζ5) = 2π/5

-4 1 6-9

(a)

∠FTx(ζl) = 2πx/l

0x − l x x + l

(b)

Figure 13: Transposition corresponds to a phase shift: (a) T1(ζ5), (b) Tx(ζl).

phase corresponds to the angle of a clockwise rotation from due north.9 For example, with respect
to a 5-cycle, P = {0, 5, 15} has a magnitude of 3 and a phase of 0. We can represent the situation
by a vector with a length of three pointing due north (see Figure 14a). The vector corresponding
to T1(P) with respect to a 5-cycle is shown in Figure 14b, where the vector in (a) has been rotated
clockwise by 1/5. Recall from the second graph of Figure 7 that with respect to a 6-cycle P has a
magnitude of 1. Also note that the cosine wave that gives the highest correlation is shifted to the
left by one semitone or one sixth of a cycle, yielding a phase of −2π/6 = −π/3. The corresponding
vector, with a length of 1 and rotated counter-clockwise by 1/6, is shown in Figure 14c.

Combining magnitudes and phases yields the Fourier transform of set P with respect to fre-
quency z = 1

l , written FP(z) or, in abbreviated form, FP.10 The magnitude is indicated by |FP|
and the phase by ∠FP.11 For example, the Fourier transform of set P with respect to a 6-cycle is
FP


1
6


, where the magnitude is

FP


1
6

 = 1 and the phase is ∠FP


1
6


= −π3 .

The Fourier transform takes a set from the domain of pitches or pitch classes into the domain
of interval cycles where the underlying periodicities of a set are explicitly represented. It is in the
interval-class domain that the infinitely many sets in continuous pitch or pitch-class space can be
analyzed, compared, and transformed on equal footing. First, we must consider how to calculate
the Fourier transform.12

9The association in this paper of zero phase with due north and a positive change of phase with clockwise rotation
runs contrary to mathematical convention. By convention zero phase is associated with the positive x axis and a positive
change of phase with counterclockwise rotation. The contrary association adopted in this paper is in agreement with the
clock-face diagrams in Quinn 2007.

10Strictly speaking, we take the Fourier transform of the characteristic function of set P. (See §8.) Nonetheless, for
our purposes the slight abuse of mathematical language is convenient and not particularly problematic.

11The magnitude and phase can be combined into the single complex number, FP = reiθ, where r is the magnitude, θ
is the phase, and i =

√
−1.

12Quinn 2007 (Part 3) demonstrates the relevance of the Fourier series with respect to equal-tempered pitch-class

8

Figure 13. Transposition corresponds to a phase shift: (a) T1(z5), (b) Tx (zl)

Dividing by the generating interval, l, of an interval cycle as in the pre-
vious paragraph is the same as multiplying by 1/l, which is the interval cycle 
frequency. The frequency is the number of cycles per semitone. For example, 
a semitone spans 1/5 of a 5-cycle and two complete cycles of a quartertone 
cycle; thus, these cycles have frequencies of 1/5 and 2, respectively. Using  
z 5 1/l for the frequency, we can rewrite the phase of the cosine wave measur-
ing correlation with Tx(zl) as simply 2πxz.

We can combine the magnitude and phase of a set with respect to a given 
frequency by vectors in a two-dimensional plane, where the magnitude corre-
sponds to the length of the vector and the phase corresponds to the angle of 
a clockwise rotation from due north.9 For example, with respect to a 5-cycle,  
P 5 {0, 5, 15} has a magnitude of 3 and a phase of 0. We can represent the  

(b)

(a)

9 The association in this article of zero phase with due north 
and a positive change of phase with clockwise rotation (or 
rightward shift) runs contrary to mathematical convention. 
By convention, zero phase is associated with the positive 

x-axis and a positive change of phase with counterclockwise 
rotation (or leftward shift). The contrary association adopted 
in this article is in agreement with the clock-face diagrams 
in Quinn 2007.
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situation by a vector with a length of three pointing due north (see Figure 
14a). The vector corresponding to T 1(P) with respect to a 5-cycle is shown in 
Figure 14b, where the vector in Figure 14a has been rotated clockwise by 1/5. 
recall from Figure 7b that with respect to a 6-cycle P has a magnitude of 1. also 
note that the cosine wave that gives the highest correlation is shifted to the left 
by one semitone or one-sixth of a cycle, yielding a phase of 22π/6 5 2π/3. 
The corresponding vector, with a length of 1 and rotated counterclockwise  
by 1/6, is shown in Figure 14c.

Combining magnitudes and phases yields the Fourier transform of set P 
with respect to frequency z 5 1/l, written FP(z) or, in abbreviated form, FP.10 
The magnitude is indicated by |FP| and the phase by /FP.11 For example, the 
Fourier transform of set P with respect to a 6-cycle is FP(1/6), where the mag-
nitude is |FP (1/6)| 5 1 and the phase is /FP (1/6) 5 2π/3.

The Fourier transform takes a set from the domain of pitches or pitch 
classes into the domain of interval frequencies where the underlying period-
icities of a set are explicitly represented. It is in the interval-frequency domain 
that the infinitely many sets in continuous pitch or pitch-class space can be 
analyzed, compared, and transformed on equal footing. First, we must con-
sider how to calculate the Fourier transform.12

(a) (b) (c)

2π
5

− π3

(a) (b) (c)

FP


1
5


FT1(P)


1
5


FP


1
6



magnitude = 3 magnitude = 3 magnitude = 1
phase = 0 phase = 2π/5 phase = −2π/6 = −π/3

Figure 14: Representing magnitudes and phases of a) P with respect to a 5-cycle, b) T1(P) with
respect to a 5-cycle, and c) P with respect to a 6-cycle.

3 Pitch sets

3.1 Fourier transform of pitch sets

We begin with the Fourier transform of the singleton pitch set {0}. Since a singleton is (trivially)
a subset of all interval cycles (up to transposition), the magnitude of its transform will be 1 for all
values of z. Moreover, since the interval cycle to which {0} belongs will obviously contain pitch 0,
the phase of the transform will be 0 for all values of z. Figure 15 shows F{0}(z) for all values of z:
a unit vector pointing due north.

Figure 15: The Fourier transform F{0} for all values of z.

Next we consider the Fourier transform of the arbitrary singleton pitch set {p}. While the
magnitude of the transform will again be 1 for all values of z, the phase will vary according to the
specific values of p and z. Since p is simply Tp(0), we know from section 2.2 that the phase will
be 2πpz. For example, Figure 16 shows the Fourier transforms of {0}, {5}, and {15} for z = 1/6
(or a 6-cycle) with magnitudes of 1 and phases of 0, 2π · 5

6 =
5
3π = −π3 , and 2π · 15

6 = 5π = π,
respectively.

spaces. Sections 6.4 and 4 of the present paper summarize Quinn’s work (especially in the comments on Figure 21),
teases out the underlying mathematics, and both extends it to continuous pitch-class spaces and connects it with pitch

9

Figure 14. Representing magnitudes and phases of (a) P = {0, 5, 15} with respect to a 5-cycle, 

(b) T1(P) with respect to a 5-cycle, and (c) P with respect to a 6-cycle

10 Strictly speaking, we take the Fourier transform of the 
characteristic function of set P. (See §8.) Nonetheless, for 
our purposes the slight abuse of mathematical language is 
convenient and not particularly problematic.

11 The magnitude and phase can be combined into the sin-
gle complex number, FP(z) 5 reiq, where r is the magnitude, 
q is the phase, and i 5 21.

12 Quinn 2007 (part 3) demonstrates the relevance of the 
Fourier series with respect to equal tempered pitch-class 
spaces. Sections 3 and 4 of the present article summarize 
Quinn’s work (especially in the comments on Figure 21), 
tease out the underlying mathematics, and both extend it 
to continuous pitch-class spaces and connect it with pitch 
space and the continuous Fourier transform.
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3. Pitch sets
3.1 Fourier transform of pitch sets

We begin with the Fourier transform of the singleton pitch set {0}. Since a 
singleton is (trivially) a subset of all interval cycles (up to transposition), the 
magnitude of its transform will be 1 for all values of z. Moreover, since the 
interval cycle to which {0} belongs will obviously contain pitch 0, the phase of 
the transform will be 0 for all values of z. Figure 15 shows F{0}(z) for all values 
of z: a unit vector pointing due north.

Next we consider the Fourier transform of the arbitrary singleton pitch 
set {p}. While the magnitude of the transform will again be 1 for all values 
of z, the phase will vary according to the specific values of p and z. Since p is  
simply Tp(0), we know from section 2.3 that the phase will be 2πpz. For exam-
ple, Figure 16 shows the Fourier transforms of {0}, {5}, and {15} for z 5 1/6 
(or a 6-cycle) with magnitudes of 1 and phases of 0, 2π ? −56  5 −53 π 5 –π/3, and  
2π ? −15

6 5 5π 5 π, respectively.
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respect to a 5-cycle, and c) P with respect to a 6-cycle.
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values of z. Moreover, since the interval cycle to which {0} belongs will obviously contain pitch 0,
the phase of the transform will be 0 for all values of z. Figure 15 shows F{0}(z) for all values of z:
a unit vector pointing due north.

Figure 15: The Fourier transform F{0} for all values of z.

Next we consider the Fourier transform of the arbitrary singleton pitch set {p}. While the
magnitude of the transform will again be 1 for all values of z, the phase will vary according to the
specific values of p and z. Since p is simply Tp(0), we know from section 2.2 that the phase will
be 2πpz. For example, Figure 16 shows the Fourier transforms of {0}, {5}, and {15} for z = 1/6
(or a 6-cycle) with magnitudes of 1 and phases of 0, 2π · 5
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5
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spaces. Sections 6.4 and 4 of the present paper summarize Quinn’s work (especially in the comments on Figure 21),
teases out the underlying mathematics, and both extends it to continuous pitch-class spaces and connects it with pitch
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Figure 15. The Fourier transform F{0}(z) for all values of z

Figure 16. The Fourier transforms of {0}, {5}, and {15} with respect to a 6-cycle
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Figure 16: The Fourier transforms of {0}, {5}, and {15} with respect to a 6-cycle.

The Fourier transform of a pitch set containing multiple pitches is found by adding together
the transforms of the individual pitches.13 Adding two vectors together is accomplished by simply
placing the tail of one vector on the head of the other. The resulting vector that extends from the
tail of the first to the head of the last is the sum of the vectors. Since arrow addition is commutative,
we can add the arrows in any order. For example, to find the Fourier transform of P = {0, 5, 15}
with respect to a 6-cycle, we add the vectors for {0}, {5}, and {15} shown in Figure 16. The vector
resulting from this summation, shown in Figure 17a, has a magnitude of 1 and a phase of −π3 ,
confirming the informal results shown in Figure 7b. In this particular case there is a means to
simplify the addition of vectors. Note that the vectors associated with the transforms of {0} and
{15} with respect to a 6-cycle point in opposite directions with the same magnitude. Thus, when
these two vectors are added they will cancel each other yielding the zero vector (a point) shown in
Figure 17b. Since adding any vector to the zero vector will yield the original vector, the transform
of {0, 5, 15} with respect to a 6-cycle will be the same as that for {5}, shown in Figure 17c. This
canceling of vectors is an important phenomenon that will become particularly useful in §7.

(a) (b) (c)

Figure 17: The Fourier transform of {0, 5, 15} with respect to a 6-cycle.

In order to accurately measure the magnitude and phase of the Fourier transform of pitch sets
it is helpful to first convert the corresponding vectors to Cartesian coordinates. Again, we be-
gin with singleton pitch sets. Given a set {p} and a frequency z, the vector associated with the
Fourier transform F{p}(z) extends from the origin to the point (x, y), where x = sin(2πpz) and
y = cos(2πpz). For example, letting p = 5 and z = 1/8 (an 8-cycle), the vector associated with

space and the continuous Fourier transform.
13This follows from the general principle that FP∪Q = FP + FQ. (See §8.)

10

The Fourier transform of a pitch set containing multiple pitches is 
found by adding together the transforms of the individual pitches.13 adding 
two vectors together is accomplished by simply placing the tail of one vector 
on the head of the other. The resulting vector that extends from the tail of 
the first to the head of the last is the sum of the vectors. Since arrow addition 
is commutative, we can add the arrows in any order. For example, to find the 
Fourier transform of P 5 {0, 5, 15} with respect to a 6-cycle, we add the vectors 

13 This follows from the general principle that FP<Q 5  
FP 1 FQ. (See §8.)
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for {0}, {5}, and {15} shown in Figure 16. The vector resulting from this sum-
mation, shown in Figure 17a, has a magnitude of 1 and a phase of –π/3, con-
firming the informal results shown in Figure 7b. In this particular case, there 
is a means to simplify the addition of vectors. Note that the vectors associated 
with the transforms of {0} and {15} with respect to a 6-cycle point in opposite 
directions with the same magnitude. Thus, when these two vectors are added, 
they will cancel each other, yielding the zero vector (a point) shown in Figure 
17b. Since adding any vector to the zero vector will yield the original vector, 
the transform of {0, 5, 15} with respect to a 6-cycle will be the same as that for 
{5}, shown in Figure 17c. This canceling of vectors is an important phenom-
enon that will become particularly useful in §7.

− π3

π

F{0}


1
6


F{5}


1
6


F{15}


1
6



Figure 16: The Fourier transforms of {0}, {5}, and {15} with respect to a 6-cycle.

The Fourier transform of a pitch set containing multiple pitches is found by adding together
the transforms of the individual pitches.13 Adding two vectors together is accomplished by simply
placing the tail of one vector on the head of the other. The resulting vector that extends from the
tail of the first to the head of the last is the sum of the vectors. Since arrow addition is commutative,
we can add the arrows in any order. For example, to find the Fourier transform of P = {0, 5, 15}
with respect to a 6-cycle, we add the vectors for {0}, {5}, and {15} shown in Figure 16. The vector
resulting from this summation, shown in Figure 17a, has a magnitude of 1 and a phase of −π3 ,
confirming the informal results shown in Figure 7b. In this particular case there is a means to
simplify the addition of vectors. Note that the vectors associated with the transforms of {0} and
{15} with respect to a 6-cycle point in opposite directions with the same magnitude. Thus, when
these two vectors are added they will cancel each other yielding the zero vector (a point) shown in
Figure 17b. Since adding any vector to the zero vector will yield the original vector, the transform
of {0, 5, 15} with respect to a 6-cycle will be the same as that for {5}, shown in Figure 17c. This
canceling of vectors is an important phenomenon that will become particularly useful in §7.

(a) (b) (c)

Figure 17: The Fourier transform of {0, 5, 15} with respect to a 6-cycle.

In order to accurately measure the magnitude and phase of the Fourier transform of pitch sets
it is helpful to first convert the corresponding vectors to Cartesian coordinates. Again, we be-
gin with singleton pitch sets. Given a set {p} and a frequency z, the vector associated with the
Fourier transform F{p}(z) extends from the origin to the point (x, y), where x = sin(2πpz) and
y = cos(2πpz). For example, letting p = 5 and z = 1/8 (an 8-cycle), the vector associated with

space and the continuous Fourier transform.
13This follows from the general principle that FP∪Q = FP + FQ. (See §8.)

10

Figure 17. The Fourier transform of {0, 5, 15} with respect to a 6-cycle

In order to accurately measure the magnitude and phase of the Fourier 
transform of pitch sets, it is helpful to first convert the corresponding vectors 
to Cartesian coordinates. again, we begin with singleton pitch sets. Given a 
set {p} and a frequency z, the vector associated with the Fourier transform  
F{p }(z) extends from the origin to the point (x, y), where x 5 sin(2πpz) and  
y 5 cos(2πpz). For example, letting p 5 5 and z 5 1/8 (an 8-cycle), the vector 
associated with the Fourier transform F{5}(1/8) extends from the origin to 
the point x1 5 (22/2, 22/2), since sin(2π ? −58 ) 5 cos(2π ? −58 ) 5 22/2.  
Likewise, we can calculate that the vectors associated with the Fourier transforms 
for {0} and {15} with respect to an 8-cycle extend from the origin to the points  
x2 5 (0, 1) and x3 5 (22/2, 2/2), respectively.

as before, we can find the vector associated with the Fourier transform 
of P 5 {0, 5, 15} with respect to an 8-cycle by adding the vectors for the indi-
vidual pitches. Having converted the magnitude and phase information to 
Cartesian coordinates, this is equivalent to adding the x and y coordinates of 
each of the three points, x1, x2, and x3, independently. Summing the x coordi-
nates, we have 22/2 1 0 2 2/2 5 22; summing the y coordinates, we 
have 22/2 1 1 1 2/2 5 1. Thus, the Fourier transform of P with respect 
to an 8-cycle, FP(1/8), is represented by the vector extending from the origin 
to the point (22, 1).

More generally, for an arbitrary pitch set Q and frequency z, the Fourier 
transform FQ(z) is represented by the vector extending from the origin to the 

(a) (b) (c)
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point (x, y), where x 5 S
q[Q

sin(2πqz) and y 5 S
q[Q

cos(2πqz). We will call x the sine 
component of the transform and y the cosine component, respectively, written 
FxQ and FyQ.

We can calculate the length of this vector, and thus the magnitude of the 
associated Fourier transform, by using the Pythagorean theorem. The distance 
from the origin to the point (x, y) is given by   x2  y 2 . For example, recalling 
that the vector for the Fourier transform of P with respect to an 8-cycle extends 
from the origin to the point (22, 1), the length of the vector is   2 2  1 5 
211 5 3. Thus, the magnitude of the transform is |FP(1/8)| 5 3. This 
value does not necessarily tell us much without comparisons with other triads, 
which is why graphs such as Figure 8 are particularly helpful.

More generally, the magnitude of the Fourier transform of Q with fre-
quency z is

FQ(z)        
qQ
 

sin(2πqz)
2

qQ
 

cos(2πqz) .
2

 (1)

We will refer to this function as the spectrum of Q and use the symbols Q, R, 
S, and so on, to refer to the spectra of Q , R , and S. We will see later that the 
squared magnitude of the Fourier transform (|FQ|2 or Q2), often called the 
power spectrum, will be even more useful for our purposes.

− 1
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0 1
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. . . . . .

(a) FxP(z)
− 1

2
0 1
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. . . . . .

(b) FyP(z)
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. . . . . .

(c) |FP(z)|

55
2
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(d) |FP(l)|, l = 1/z

Figure 18: Derivation of the spectrum |F{0,5,15}| graphed in Figure 8.

13

Figure 18. Derivation of the spectrum |F {0, 5, 15}| graphed in Figure 8

(a)

(c)

(d)

(b)
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3.2 Graphing chord spectra

a couple of examples should help to make the details of §3.1 clear. We begin 
by re-creating the spectrum of P 5 {0, 5, 15}, which was graphed in Figure 8, 
according to the following steps. (See Figure 18.)

(a) Find the sine component of the Fourier transform, FxP:
 FxP (z) 5 sin(0) 1 sin(5 3 2πz) 1 sin(15 3 2πz)
(b) Find the cosine component of the Fourier transform, FyP:
 FyP (z) 5 cos(0) 1 cos(5 3 2πz) 1 cos(15 3 2πz)
(c) Find the magnitude of the Fourier transform:
 

FP(z)        



FxP(z)
2 



FyP(z)
2

(d) Since the graph in Figure 8 is plotted as a function of interval size, 
l, which is the reciprocal of interval frequency z, the final step is to 
substitute l 5 1/z for z and graph

 FP(l)        1  cos(10π/l)  cos(30π/l)2  sin(10π/l)  sin(30π/l)2

For a second example, we compare the spectra of the three pitch sets 
from the introduction: Q 5 {G3, D4, F≥4, a4, E4}, R 5 {G3, B3, D4, a4, E4}, and 
S 5 {G3, B3, E≤4, a4, E4}. The spectra of Q and R are superimposed in Figure 
19a, and those of R and S are superimposed in Figure 19b. (In the graphs, 
the horizontal axis is l 5 1/z, the period of each sinusoid or, equivalently, the 
size of the intervals in each interval cycle.) It is clear from visual inspection 
of the two spectra in Figure 19a that Q and R are quite similar harmonically. 
Both contain strong and virtually identical peaks near l 5 7 and all of its 
integer divisors, l 5 7/2, l 5 7/3, and so forth, but no other peaks of signifi-
cant magnitude. In addition, all of the differences between the two spectra 
involve relatively weak components. By comparison, the spectra of R and S 
differ significantly. Their peaks do not align except for the somewhat weaker 
peak near x 5 7, and those portions that are similar (e.g., the region between 
x 5 4 and x 5 4.5) involve weak components. The intuitions about harmonic 
similarity discussed in the introduction are made manifest in these graphs of 
chord spectra. (We will see in §6 how to make these intuitions more concrete 
by measuring the distance between these spectra.)

4. Pitch-class sets
4.1 Fourier transform of pitch-class sets

For the Fourier transform of pitch sets, it is necessary to consider all possible 
interval cycles. However, for pitch-class sets, it is necessary only to consider 
those interval cycles that divide the octave into an integral number of parts, 
such as the octave itself, the tritone, the augmented triad, the diminished 
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seventh chord, the five-note set-class {0, 2.4, 4.8, 7.2, 9.6}, and so forth.14 Divid-
ing the octave into k [ Z parts yields a 12/k-cycle, which has a correspond-
ing frequency of z 5 k /12. Thus, while the Fourier transform of a pitch set 
is (generally) a continuous function of interval frequency, the transform 
of a pitch-class set is a discrete series (at all frequencies k /12) called the  
Fourier series.

Knowing the spectrum of any pitch set, P, we can easily derive the 
spectrum of its corresponding pitch-class set, notated PO, in a manner dem-
onstrated by Figure 20. Figure 20a shows the spectrum of the pitch set  
Q 5 {0, 5, 15}, with the values at frequencies of the form k /12 marked by verti-
cal lines. These vertical lines are the spectrum of the pitch-class set QO, shown 
in Figure 20b. In other words, the Fourier transform of QO is a sampled version 
of the transform of Q , where the sampling occurs at all frequencies of the 
form k /12. We will refer to these frequencies as the harmonics of the octave, 
with the frequency k /12 being the kth harmonic. Formally, the sine and cosine 

Figure 19. Comparison of the spectra of the three pitch sets from Figure 1: (a) Q and R,  

(b) R and S
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Figure 19: Comparison of the spectra of the three pitch sets from Figure 1.

the octave into k ∈ Z parts yields a 12/k-cycle, which has a corresponding frequency of z = k/12.
Thus, while the Fourier transform of a pitch set is (generally) a continuous function of interval
frequency, the transform of a pitch-class set is a discrete series (at all frequencies k/12) called the
Fourier series.

Knowing the spectrum of any pitch set, P, we can easily derive the spectrum of its correspond-
ing pitch-class set, notated PO, in a manner demonstrated by Figure 20. In (a) the spectrum of
the pitch set Q = {0, 5, 15} is given with the values at frequencies of the form k/12 are marked by
vertical lines. These vertical lines are the spectrum of the pitch-class set QO, shown in (b). In other
words, the Fourier transform of QO is a sampled version of the transform of Q, where the sampling
occurs at all frequencies of the form k

12 . We will refer to these frequencies as the harmonics of the
octave, with the frequency k/12 being the kth harmonic. Formally, the sine and cosine components
of the Fourier transform of any pitch-class set, PO, is:

FxP(k/12) =

p∈P

sin(2πpk), FyP(k/12) =

p∈P

cos(2πpk), k ∈ Z. (2)

Note that it does not matter which representative of each pitch-class we use for equation 2. For
example, suppose pitch 15 in Q is replaced by 3 in Q = {0, 3, 5}. Even though the spectra of Q and
Q are different (Figure 20c), the spectra of QO and Q

O are the same (Figure 20d). (This of course
had better be the case, since QO and Q

O are the same pitch-class set.)

14

(a)

(b)

14 If l is rational, then any l-cycle in pitch space is equivalent 
to some equal division of the octave in pitch-class space. 
For example, consider an infinite cycle of perfect fifths, a 
7-cycle. As is well known, an infinite cycle of perfect fifths 
is equivalent to a 12-fold division of the octave, disregarding 

order. More generally, any l-cycle in pitch space where l is a 
rational number of the form a/b is equivalent to a 12b

�gcd(a,12) -fold 
division of the octave in pitch-class space. Irrational interval 
cycles in pitch space such as (. . . , 2 2, 0,  2, . . .) do not 
yield closed interval cycles in pitch-class space. (See §5.)
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components of the Fourier transform of any pitch-class set, PO, are

FxP(k /12)5 S
p[P

sin(2πpk /12), FyP(k /12) 5 S
p[P

cos(2πpk /12), k [ Z. (2)

Note that it does not matter which representative of each pitch class we 
use for Equation 2. For example, suppose pitch 15 in Q is replaced by 3 in  
Q 9 5 {0, 3, 5}. Even though the spectra of Q and Q 9 are different (Figure 20c), 
the spectra of Qo and Q 9o are the same (Figure 20d). (This, of course, had  
better be the case, since Qo and Q 9o are the same pitch-class set.)

4.2 Examples of pitch-class spectra

For reasons that will become clear in §5, it is only necessary to consider a 
finite number of harmonics for the spectra of equal tempered pitch-class sets. 
Specifically, for a pitch-class set drawn from n-tone equal temperament, it is 
only necessary to consider harmonics 0 through , the integral part of n /2. 
For example, if n is 12 or 13, the entire infinite spectrum of a pitch-class set 
can be reconstructed from harmonics 0 through 6 (since 6 is the integral part 
of 13/2).

Figure 21 graphs the spectra of the twelve classical pitch-class trichordal 
set-classes (those without pitch-class duplications) in twelve-tone equal  
temperament. The numbered comments below correspond to each of the 
harmonic components of these twelve set-classes:15
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(c) |F{0,3,5}(z)| (d) |F{0,3,5}O(z)|

Figure 20: Derivation of the transform of {0, 3, 5}O from (a-b) {0, 5, 15} and (c-d) {0, 3, 5}.

4.2 Examples of pitch-class spectra

For reasons that will become clear in §5, it is only necessary to consider a finite number of harmon-
ics for the spectra of equal-tempered pitch-class sets. Specifically, for a pitch-class set drawn from
n-tone equal-temperament, it is only necessary to consider harmonics 0 through n/2, the integral
part of n/2. For example, if n is 12 or 13, the entire infinite spectrum of a pitch-class set can be
reconstructed from harmonics 0 through 6 (since 6 is the integral part of 13/2).

Figure 21 graphs the spectra of the 12 classical pitch-class trichordal set-classes (those without
pitch class duplications) in 12-tone equal-temperament. The numbered comments below corre-
spond to each of the harmonic components of these 12 set classes:15

0. As noted before, harmonic 0 corresponds to the cardinality of a given pitch or pitch-class set.
Thus, each of the spectra graphed in Figure 21 has a magnitude of 3 for the zeroth harmonic.

1. Harmonic 1 indicates the degree to which a pitch-class set is like an octave or unison. The
magnitude of this harmonic is thus a measure of how unevenly a set divides the octave.
Highly uneven sets such as {0, 1, 2}O have a high magnitude for this harmonic, while sets
that divide the octave into equal divisions such as {0, 4, 8}O have zero magnitude.

2. Harmonic 2 indicates the degree to which a set is like a two-fold division of the octave, or a
tritone. Not surprisingly, the magnitude of the second harmonic is quite high for {0, 1, 6}O,

15For more on the interpretation of the magnitudes for various harmonics see Quinn 2007. Analogous comments
apply to the spectra of set classes with any number of pitch-classes.

15

Figure 20. Derivation of the transform of {0, 3, 5}O from (a and b) {0, 5, 15} and (c and d) {0, 3, 5}

15 For more on the interpretation of the magnitudes for 
various harmonics, see Quinn 2007. Analogous comments 
apply to the spectra of set-classes with any number of pitch 
classes.

(a)

(c)

(b)

(d)
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(0) as noted before, harmonic 0 corresponds to the cardinality of a 
given pitch or pitch-class set. Thus, each of the spectra graphed in 
Figure 21 has a magnitude of 3 for the zeroth harmonic.

(1) Harmonic 1 is the magnitude of a pitch-class set with respect to an 
octave or unison. The magnitude of this harmonic is thus a mea-
sure of how unevenly a set divides the octave. Highly uneven sets 
such as {0, 1, 2}O have a high magnitude for this harmonic, while 
sets that divide the octave into equal divisions such as {0, 4, 8}O have 
zero magnitude.

(2) Harmonic 2 is the magnitude of a set with respect to a twofold 
division of the octave, or a tritone. Not surprisingly, the magnitude 
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Figure 21: Spectra of 12-tone equal-tempered trichordal pitch-class sets.
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Figure 21. Spectra of twelve-tone equal tempered trichordal pitch-class sets



295Clifton Callender  Continuous Harmonic Spaces

of the second harmonic is quite high for {0, 1, 6}O, while the mag-
nitude vanishes for {0, 2, 4}O, since this set-class divides the tritone 
into three equal parts.

(3) Harmonic 3 is the magnitude of a set with respect to a threefold 
division of the octave, or an augmented triad. Obviously, {0, 4, 8}O

has maximal magnitude for this harmonic, and, not surprisingly, 
the magnitudes for {0, 1, 4}O and {0, 1, 5}O are also quite high.

(4) The magnitude of the fourth harmonic is maximal for {0, 3, 6}O,  
since this set-class belongs to a single fourfold division of the 
octave, or a diminished seventh chord. The corresponding magni-
tude vanishes for {0, 1, 2}O, {0, 1, 5}O, {0, 2, 4}O, {0, 2, 7}O, and {0, 4, 8}O,  
since the members of these set-classes are drawn equally from the 
three unique diminished seventh chords.

(5) The fifth harmonic is the magnitude of a set with respect to a five-
fold division of the octave, or the set-class {0, 2.4, 4.8, 7.2, 9.6}O. The 
generating interval of this cycle, 2.4, is nearly halfway in between 
an equal tempered major second and minor third, but twice this 
interval, 4.8, is very close to an equal tempered perfect fourth. 
Thus, those set-classes that belong to a small segment of a 5-cycle, 
such as {0, 2, 7}O and {0, 2, 5}O, have significant magnitudes for the 
fifth harmonic.

(6) Finally, harmonic 6 is the magnitude of a set with respect to a six-
fold division of the octave, or a whole-tone collection. The three 
trichordal set-classes that are subsets of a single whole-tone collec-
tion, {0, 2, 4}O, {0, 2, 6}O, and {0, 4, 8}O, have maximal magnitude for 
this harmonic. Since the remaining trichordal set-classes all have 
two members that belong to one whole-tone collection while the 
remaining member belongs to the other collection, each of these 
set-classes has a magnitude of 1 for this harmonic.

[000] [001] [002] [003] [004] [005] [006]

[012] [013] [014] [015] [016]

[024] [025] [026] [027]

[036] [037]

[048]

Figure 22: Fundamental region for trichordal set classes in continuous pitch-class space.

classes that are subsets of a single k-fold division of the octave. Thus, for the first harmonic there
is a single maximum at the tripled unison, {0, 0, 0}O, since this is the only trichordal set class that
belongs to one-fold division of the octave. In fact, since a unison (with any number of pitch-class
duplications) is trivially a member of any interval cycle (up to transposition), there will be a maxi-
mum at this set class for all harmonics. For the second harmonic, there is an additional maximum
at {0, 0, 6}O; for the third harmonic, there are additional maxima at {0, 0, 4}O and {0, 4, 8}O; and sim-
ilarly for the remaining harmonics. Since the division of the octave into five parts does not yield
a 12-tone equal-tempered set, the maxima for the fifth harmonic do not lie on familiar set classes.
Instead, there are maxima at {0, 0, 0}O, {0, 0, 2.4}O, {0, 0, 4.8}O, {0, 2.4, 4.8}O, and {0, 2.4, 7.2}O.

Set classes lying near maxima will have relatively high magnitudes for a given harmonic. For
example, {0, 1, 6}O lies near {0, 0, 6}O and thus has a relatively high magnitude for the second
harmonic, while the magnitude of {0, 2, 7}O with respect to the fifth harmonic is relative high due
to its proximity to the maximum at {0, 2.4, 7.2}O.17 Also note that the higher the harmonic the
greater the number of maxima and the steeper the slope away from these high points. Thus the
topology for the first harmonic consists of a gradual descending slope from a single maximum at
the minimally even set class, while the landscape of the sixth harmonic is studded with seven peaks
and correspondingly steep gradients.

Analogous n-dimensional structures obtain for the spectra of n-note sets in continuous pitch-

17Tymoczko 2007 makes the same point in a much more rigorous manner, demonstrating a strong inverse relationship
between the magnitude of the kth harmonic in a chord’s spectrum and the voice-leading distance from that chord to
the nearest subset of a k-fold division of the octave. This means that the location of a chord in voice-leading space
determines the chord’s spectrum to a high degree of accuracy. Conversely, two chords will be close in Fourier space if
the set of their voice-leading distances to the nearest subset of equal divisions of the octave are similar. Of course, two
chords can be similarly distant from these subsets without necessarily being close to one another in voice-leading space.
While Tymoczko’s work exposes a deep connection between voice-leading and Fourier spaces, it also helps to explain
the situation encountered in the introduction in which chords are close in one space but relatively more distant in the
other.

18

Figure 22. Fundamental region for trichordal set-classes in continuous pitch-class space
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While the snapshots provided in Figure 21 provide a harmonic blueprint 
for each of the set-classes, we can gain a more complete understanding of the 
underlying topology by considering the spectra of trichords in continuous 
pitch-class space. We begin by plotting trichord set-classes in two dimensions  

Figure 23. Magnitudes of all trichordal set-classes in twelve-tone equal temperament for the 

first six harmonics of the octave
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Figure 23. (cont.)

such that [0, y, x] is located at the point (x, y). For example, augmented tri-
ads are located at (8, 4), chromatic trichords at (2, 1), and tripled unisons at  
(0, 0). For reasons that lie beyond the scope of this article, we will also use 
an oblique coordinate system in which the x- and y-axes are in a 1208 relation 



298 J O U r N a L  o f  M U S I C  T H E O r Y

rather than 908. Plotting pitch-class sets in this manner, all possible trichord 
set-classes lie within the shaded region of Figure 22. This is the fundamental 
region of trichord set-classes, since all possible three-note set-classes lie in this 
region and there are no duplications—no two points within the region rep-
resent the same set-class. Set-classes (including those with pitch-class duplica-
tions) from twelve-tone equal temperament are labeled only as a guide for the 
reader; all points within the region represent unique set-classes, and none are 
to be given conceptual priority.16

Next, we add a third dimension that corresponds to the magnitude of  
each set-class with respect to a given harmonic, shown in Figure 23. For har-
monic k, there will be global maxima at those set-classes that are subsets of 
a single k-fold division of the octave. Thus, for the first harmonic, there is a 
single maximum at the tripled unison, {0, 0, 0}O, since this is the only trichordal 
set-class that belongs to a onefold division of the octave. In fact, since a uni-
son (with any number of pitch-class duplications) is trivially a member of any 
interval cycle (up to transposition), there will be a maximum at this set-class for 
all harmonics. For the second harmonic, there is an additional maximum at  
{0, 0, 6}O; for the third harmonic, there are additional maxima at {0, 0, 4}O

and {0, 4, 8}O and similarly for the remaining harmonics. Since the division of 
the octave into five parts does not yield a twelve-tone equal tempered set, the 
maxima for the fifth harmonic do not lie on familiar set-classes. Instead, there 
are maxima at {0, 0, 0}O, {0, 0, 2.4}O, {0, 0, 4.8}O, {0, 2.4, 4.8}O, and {0, 2.4, 7.2}O.

Set-classes lying near maxima will have relatively high magnitudes for 
a given harmonic. For example, {0, 1, 6}O lies near {0, 0, 6}O and thus has a 
relatively high magnitude for the second harmonic, while the magnitude of  
{0, 2, 7}O with respect to the fifth harmonic is relatively high due to its proxim-
ity to the maximum at {0, 2.4, 7.2}O.17 also note that the higher the harmonic, 
the greater the number of maxima and the steeper the slope away from these 
high points. Thus, the topology for the first harmonic consists of a gradual 
descending slope from a single maximum at the minimally even set-class, 
while the landscape of the sixth harmonic is studded with seven peaks and 
correspondingly steep gradients.

analogous n-dimensional structures obtain for the spectra of n-note sets 
in continuous pitch-class space. Despite the difficulties in visualizing the cases 
for sets of more than three notes, the spaces are easily described: for the kth 

16 For a more detailed explanation of this region and its 
derivation, see Callender 2004 and Callender, Quinn, and 
Tymoczko 2008.

17 Tymoczko 2008 makes the same point in a much more 
rigorous manner, demonstrating a strong inverse relation-
ship between the magnitude of the kth harmonic in a chord’s 
spectrum and the voice-leading distance from that chord to 
the nearest subset of a k-fold division of the octave. This 
means that the location of a chord in voice-leading space 
determines the chord’s spectrum to a high degree of accu-

racy. Conversely, two chords will be close in Fourier space if 
the set of their voice-leading distances to the nearest sub-
set of equal divisions of the octave are similar. Of course, 
two chords can be similarly distant from these subsets with-
out necessarily being close to one another in voice-leading 
space. While Tymoczko’s work exposes a deep connection 
between voice-leading and Fourier spaces, it also helps 
to explain the situation encountered in the introduction in 
which chords are close in one space but relatively more dis-
tant in the other.
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harmonic, peaks are located at all set-classes of the form {ai}n
i = 1, where ai [ 0 

mod 12/k. The peaks (and troughs) form equal-spaced lattices correspond-
ing to triangles for three-note chords, tetrahedra for four-note chords, and 
so forth.18

5. Properties of chord spectra

It is appropriate at this point to collect a number of general properties of 
chord spectra, focusing on those that are most relevant for continuous pitch 
and pitch-class spaces.

(1) Chords with identical interval content have identical spectra. This 
is evident by rewriting Equation 1 in the alternate form

       
FP(z)        

i , j
cos2π(pi  pj)z.

            
(3)

 In this alternate form the spectrum is defined in terms of the 
directed intervals from a chord to itself: pi – pj. Thus, transposition-
ally related, inversionally related, and Z-related sets have identical 
spectra.

(2) Multiplying a chord has the effect of dilating its spectrum;  
specifically, if P 5 Mx(Q), then FP(z) 5 FQ(xz) or, equivalently, 
FP(z/x) 5 FQ(z). Quinn (2007) labels this property the multiplica-
tion principle. For example, since {0, 2, 4} is related to {0, 1, 2} by M2, 
the spectrum of {0, 2, 4} with respect to frequency z is equal to the 
spectrum of {0, 1, 2} with respect to frequency 2z.

Putting this property together with property (1) above, if 
the spectra of Mx(P) and Mx(Q) are equal at frequency z, then the 
spectra of P and Q will be equal at frequency xz. as an example of 
the usefulness of this property, consider the pitch-class sets PO 5  
{0, 1, 3}O and QO 5 {0, 1, 4}O. Multiplying both sets by 2 yields  
M2(PO) 5 {0, 2, 6}O and M2(QO) 5 {0, 2, 8}O. Since these two sets, 
M2(PO) and M2(QO), are related by inversion, their spectra are iden-
tical for all harmonics. By the multiplication principle, this implies 
that the spectra of PO and QO are equal for all harmonics of the 
form 2k (where k is any integer), which can be verified by examin-
ing the even harmonics of the relevant spectra in Figure 21. More 
generally, given any pitch-class sets PO and QO, if Mx(PO) and Mx(QO) 
are transpositionally related, inversionally related, or Z-related, 
then the spectra of PO and QO will be equal at all harmonics of the 
form xz. This property will play an important role in the discussion 
of Z-related sets in §7.

18 For more on higher-dimensional analogues of Figure 
22 and on voice-leading spaces in general, see Callender, 
Quinn, and Tymoczko 2008.
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(3) Given a pitch set P, if every member of P belongs to the same l-cycle, 
then the spectrum of P is periodic with a period of 1/l:

  P # Ty (zl) ⇒ |FP(z)| 5 |FP(z 1 1/l)|

 For example, the pitch set {0, 5, 15} belongs to a 5-cycle, so its spec-
trum, already shown in Figure 18c, has a period of 1/5. For another 
example, the pitch set {0, 3/4, 5/3} belongs to a (1/12)-cycle, since 
1/12 is the greatest common divisor of the set’s intervals. Thus, this 
set’s spectrum has a period of 12.

  The same principle applies for sets with irrational intervals, 
as long as the ratio of these intervals is rational. For example, the 
set {0, 2, 32} belongs to a cycle of 2 semitones, { . . . , 0, 2, 
22, 32, . . . }, so its spectrum has a period of 1/2. However, 
the set {0, 2, π} cannot belong to an interval cycle since the ratios 
of its intervals, such as 2/π, are not rational. Thus, the spectrum 
of this set is aperiodic.

(4) The spectrum of a pitch-class set PO is periodic if the spectrum of 
the corresponding pitch set P has a period of the form k/12, k [ Z. 
another way to state this is that if a pitch-class set belongs to some 
k-tone equal tempered system, then the spectrum of the pitch-
class set is periodic with a period of k/12. For example, while the 
pitch set P 5 {0, 5, 15} belongs to a 5-cycle and its spectrum has a  
periodicity of 1/5, the spectrum of the pitch-class set PO cannot 
have a periodicity of 1/5, since a 5-cycle does not evenly divide 
the octave. However, P also belongs to a 1-cycle, which divides the 
octaves into the familiar twelve-tone equal tempered collection, 
so the spectrum of PO has a period of 1. Similarly, {0, 3/4, 5/3}O 
belongs to a 144-fold division of the octave, so its spectrum has a 
period of 12. However, while the pitch set {0, 2, 32} has a peri-
odic spectrum, this set can never be embedded in a single equal 
tempered system. Thus, the spectrum of the pitch-class set {0, 2, 
32}O is aperiodic.

(5) Chord spectra are symmetric about z 5 0: |FP(z)| 5 |FP(2z)|. It is 
clear that an interval cycle generated by l, { . . . , 2l, 0, l, . . . }, will 
be the same as a cycle generated by 2l, { . . . , l, 0, 2l, . . . }. Thus the 
magnitude of a given set with respect to z 5 1/l will be the same as 
its magnitude with respect to 2z 5 21/l. (This is also evident from 
Equation 3, since cos q 5 cos 2q.)

(6) Putting properties (3), (4), and (5) together, if the spectrum of 
a pitch or pitch-class set is periodic with a period of 1/l, then the 
entire spectrum can be generated by the magnitudes for 0 # z # 
1/2l. By properties (3) and (4), we can see that the entire spec-
trum can be generated by any interval spanning 1/l. In particu-
lar, we can generate the entire spectrum by the magnitudes for  
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21/2l # z # 1/2l. By property (5), we can generate the nega-
tive portion of this range from the positive frequencies. For a  
pitch-class set drawn from k-tone equal temperament, it is thus 
only necessary to consider those frequencies in the range 0 # z # 
k/(2 ? 12), which corresponds to harmonics 0 through . Con-
versely, for a pitch-class set that is not drawn from any k-tone equal 
temperament, it is necessary to consider the infinite number of 
harmonics, since the spectra of these sets are aperiodic.

6. Metrics for continuous harmonic space

In this section we will consider a number of metrics defined on chord spectra 
that may be interpreted as dissimilarity measures in a continuous harmonic 
space. However, the primary aim is not to put forth any metric in particular, but 
to demonstrate both how to construct metrics on chord spectra and that these 
metrics can correlate very strongly with similarity measures based on interval 
vectors. as discussed in Scott and Isaacson 1998, if two similarity measures corre-
late very well, “they probably will stand together or fall together when subjected 
to empirical tests.” In this context, if a metric on chord spectra, SPECTra, 
and a similarity measure on interval vectors, XSIM, correlate strongly with one 
another, we can think of SPECTra as approximating XSIM in a continuous 
environment. The advantage is that, to the extent XSIM captures intuitions 
concerning harmonic similarity, SPECTra applies these intuitions to all pos-
sible chords in all possible tuning systems (to within some level of accuracy). In 
order to facilitate such comparisons, we will begin with the spectra of pitch-class  
sets drawn from twelve-tone equal temperament, then move to continuous 
pitch-class space, and finish with metrics defined on continuous pitch space.

6.1 Pitch-class sets in twelve-tone equal temperament

recall that the spectra of pitch-class sets in twelve-tone equal temperament 
are determined by the magnitudes of the first six harmonics of the octave (in 
addition to harmonic zero, which corresponds to cardinality). Let harmonics 
one through six define a six-dimensional Fourier transform space, F6. Using 
the magnitudes of these six harmonics, we can locate the spectrum of any 
equal tempered pitch-class set: P 5 (p1, . . . , p6), where pk is the magnitude 
of the kth harmonic. For example, the spectrum of P 5 {0, 4, 8}, which has 
a magnitude of 3 for the third and sixth harmonics and zero magnitude for 
the other harmonics, is located in F6 at P 5 (0, 0, 3, 0, 0, 3). a number of 
familiar similarity measures are defined on a different six-dimensional space 
defined by the interval vector, including Teitelbaum’s (1965) s.i. (for “similar-
ity index”), Isaacson’s (1990) IcVSIM, rogers’s (1999) cos Q, and Scott and 
Isaacson’s (1998) aNGLE. We now consider two metrics on chord spectra that 
are analogous to these four similarity measures.
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6.1.1 Euclidean metric in F6 a natural way to measure the distance 
between two spectra is to take the Euclidean distance between their corre-
sponding points in F6. The Euclidean distance between the spectra of two 
pitch-class sets, P and Q, is

d(P,Q)    (pi  qi)
2,  (4)

or  simply the length of the differences of the two vectors,

 d(P,Q) 5 |P 2 Q|. (5)

For example, the distance between the spectra of {0, 4, 8}, P 5 (0, 0, 3, 0, 0, 3),  
and {0, 3, 6}, Q 5 (1, 1, 1, 3, 1, 1), is d (P,Q) 5 1  1  4  9  1  4    20 < 4.47.  
This is quite similar to Teitelbaum’s (1965) s.i., which measures the Euclidean 
distance between two points in the space defined by the interval vector. Both 
d and s.i. use the same metric; the difference is the space on which this metric 
is defined.

richard Teitelbaum uses s.i. only to compare sets of the same size, 
since the metric tends to give unintuitive results when comparing sets of 
different size. (as Isaacson [1990] notes, s.i. judges all seven-note sets to 
be more similar to {0, 1, 2} than are all eight-note sets, which are all more 
similar to the chromatic trichord than are the nine-note sets.) as might be 
expected, d and s.i. correlate well; comparing pitch-class sets of equal cardi-
nality (ranging from three to nine notes), the correlation coefficient for d 
and s.i. is r 5 .87.19

While this is a fairly high correlation, a much higher value results from 
a variant of d. recall that the square of the magnitude spectrum is the power 
spectrum, which emphasizes relatively strong components and deemphasizes 
relatively weak ones. Since it is the strong components of a spectrum that 
most fully characterize the content of a set, it makes sense to define the 
Euclidean metric on the power rather than the magnitude spectrum. For 
instance, what matters most in distinguishing {0, 4, 8} and {0, 3, 6} is that the 
peak magnitudes of 3 occur in different harmonics; the fact that Q has mag-
nitudes of 1 in harmonics where P has a magnitude of 0 is of relatively little 
consequence. Denoting Euclidean metrics defined on the power spectra by 
dpow, we have

dpow(P,Q) 5 |P2 2 Q2|. (6)

The correlation between dpow and s.i. is quite high: comparing sets of cardinal-
ity 3 through 9 (limited to sets of equal cardinality), r 5 .96, meaning that 92% 
of the variance in the metrics is related (r 2 5 .92).

In order to overcome the limitation of s.i. with respect to cardinality, 
Isaacson (1990) proposes measuring the standard deviation of the differences 

19 All correlations given in this article are statistically signifi-
cant, with p # .0001.
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of two interval vectors, a measure he termed IcVSIM. For two interval vectors, 
a 5 (a1, . . . , a6) and b 5 (b1, . . . , b6), let the differences of the two vectors be 
c 5 (a1 2 b1, . . . , a6 2 b6) 5 (c1, . . . , c6). IcVSIM is defined as the standard 
deviation of c :

1
6

(c)      (ci  c̄)2,  (7)

where c̄ is the mean of the values of c. as Eric Isaacson notes, when comparing 
sets of equal cardinality, IcVSIM is the same as s.i. (up to a constant scaling fac-
tor: IcVSIM 5 s.i. /6). Thus, it should not be surprising that dpow and IcVSIM 
correlate strongly; comparing all sets of cardinalities 3 through 6 (not limited 
to those of equal cardinality), r 5 .95, while sets of cardinalities 3 through 9 
yield a slightly lower correlation of r 5 .89.

While dpow correlates strongly with IcVSIM, the former does not pos-
sess some of the more idiosyncratic features of the latter. In particular, sets 
for which the interval vectors differ by a constant are measured as maximally 
similar by IcVSIM and thus are located at the same point in the corresponding 
harmonic space. For instance, the interval vectors for A 5 {0, 3, 6} and B 5 
{0, 1, 3, 6, 7, 9} are k002001l and k224223l, respectively, differing by a constant 
value of 2. While these two sets are clearly similar in sound, it is hard to justify 
this equivalence, especially given that other, seemingly more similar pairs of 
sets, such as {0, 3, 6} and {0, 3, 6, 9}, are considered less similar. (Both Castrén  
[1994] and Buchler [1997] also question this equivalence.) In contrast, dpow

finds the two sets to be similar, but not equivalent: dpow(A,B) < 5.48, which is 
a smaller distance than that between 91% of all possible pairings.20

6.1.2 Angular distance in F6 another natural way to measure the dis-
tance between two points in a space is to take the angle between the vec-
tors extending from the origin to each of the points. This is a very common 
metric, one that is used instinctively whenever we compare the locations of 
objects in the sky. We cannot judge the actual distance between two stars by 
the naked eye, but we can approximate their angular distance fairly easily. 
Figure 24 gives examples of how angular distance applies to interval vec-
tors. In Figure 24a, {0, 2, 4} and {0, 4, 8} are plotted on a Cartesian plane 
with the x-axis representing the number of interval class 2 and the y -axis 
representing the number of interval class 4. The angular distance between 
the two vectors is q < 63.58 or < .45 radians. Smaller values for q indicate 
interval vectors that are more similar with q 5 0, indicating maximal simi-
larity. For example, Figure 24b plots the interval vectors for {0, 3, 6} and  
{0, 3, 6, 9} on a Cartesian plane with the x-axis representing the number of 

20 One idiosyncratic feature of measuring distance in F6

is that complements have identical magnitudes for each 
of these harmonics. Thus, complements are located at the 
same point in F6 and are judged to be maximally similar.  

One solution would be to incorporate the zeroth harmonic, 
which is equal to cardinality, so that chords of different car-
dinalities would not be considered equivalent.
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interval class 3 and the y -axis representing the number of interval class 6. 
Since the interval vectors of these pitch-class sets are exactly proportional, 
their vectors point in the same direction, so the angle between them is 0. 
Maximal dissimilarity, indicated by q 5 908 or π/2 radians, occurs precisely 
when two sets have no intervallic content in common.21

Scott and Isaacson’s (1998) aNGLE measures the angle between vectors 
in a six-dimensional interval-vector space, while rogers’s (1999) cos Q mea-
sures the cosine of this angle. The cosine of the angle q between two vectors, 
x 5 (x1, . . . , xn) and y 5 (y1, . . . , yn), is given by

                  , (8)cos(θ) 
x  y 
xy

where |x| is the magnitude of x (or the length from the origin to x) and x ? y 
is the dot product of x and y: x ? y 5 (xiyi . The values of cos Q range from 0, 
indicating maximal dissimilarity, to 1, indicating maximal similarity. We can 
convert this measure to a metric in a harmonic space with the widely used 
cosine distance, 1 2 cos Q, or by taking the arccos of Equation 8 yielding q, 
which is the same as aNGLE. While each of these measures yields different 
sets of numbers, they are all measuring precisely the same thing—angular 
distance—so we can take aNGLE as the representative for all three.

Equation 8 can also be used to measure the angular distance between 
points in Fourier transform space. as with the Euclidean metrics of section 
6.1.1, defining angular distance on power spectra yields a stronger corre-
lation with aNGLE than the same metric defining on magnitude spectra. 

While dpow correlates strongly with IcVSIM, the former does not possess some of the more
idiosyncratic features of the latter. In particular, sets for which the interval vectors differ by a
constant are measured as maximally similar by IcVSIM, and, thus, are located at the same point
in the corresponding harmonic space. For instance, the interval vectors for A = {0, 3, 6} and B =
{0, 1, 3, 6, 7, 9} are 002001 and 224223, respectively, differing by a constant value of two. While
these two sets are clearly similar in sound, it is hard to justify this equivalence, especially given
that other, seemingly more similar, pairs of sets, such as {0,3,6} and {0,3,6,9}, are considered less
similar. (Both Castrén [1994] and Buchler [1997] also question this equivalence.) In contrast, dpow

finds the two sets to be similar, but not equivalent: dpow(A,B) ≈ 5.48, which is a smaller distance
than that between 91% of all possible pairings.

6.1.2 Angular distance in F6

Another natural way to measure the distance between two points in a space is to take the angle
between the vectors extending from the origin to each of the points. This is a very common metric,
one that is used instinctively whenever we compare the locations of objects in the sky. We cannot
judge the actual distance between two stars by the naked eye, but we can approximate their angular
distance fairly easily. Figure 24 gives examples of how angular distance applies to interval vectors.
In (a) {0,2,4} and {0,4,8} are plotted on a Cartesian plane with the x-axis representing the number
of ic 2 and the y-axis representing the number of ic 4. The angular distance between the two
vectors is θ ≈ 63.5◦ or ≈ .45 radians. Smaller values for θ indicate interval vectors that are more
similar with θ = 0 indicating maximal similarity. For example, Figure 24b plots the interval vectors
for {0,3,6} and {0,3,6,9} on a cartesian plane with the x-axis representing the number of ic 3 and
the y-axis representing the number of ic 6. Since the interval vectors of these pitch-class sets are
exactly proportional, their vectors point in the same direction, and, thus, the angle between them is
0. Maximal dissimilarity, indicated by θ = 90◦ or π2 radians, occurs precisely when two sets have
no intervallic content in common.

{0,4,8}

{0,2,4}
θ=63.5◦

ic 2

ic 4

{0,3,6,9}

{0,3,6}
θ=0◦

ic 3

ic 6

(a) (b)

Figure 24: Angular distance between interval vectors.

24

Figure 24. Angular distance between interval vectors for (a) {0,2,4} and {0,4,8} and (b) {0,3,6} 

and {0,3,6,9}

(a) (b)

21 Since the sets in Figure 24a contain only interval classes 
2 and 4 and the sets in Figure 24b contain only interval 
classes 3 and 6, all nonzero dimensions are taken into 
account, and the graphs give complete information.
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Designating this metric as dq, we have

dθ(P
2,Q2)  arccos             .

P2  Q2 
P2Q2

 (9)

For example, if P 5 {0, 3, 6} and Q 5 {0, 3, 6, 9}, then

P 2 5 (1, 1, 1, 9, 1, 1) and Q 2 5 (0, 0, 0, 16, 0, 0),

P 2 • Q 2 5 9 • 16,

|P 2| 5 (  1  1  1  92  1  1    86, and

|Q2| 5 16.

Thus,
dq(P 2,Q2) 5 arccos 9  16

86  16
< arccos .97 < 13.958 or < .24 radians,

indicating that according to dq the two sets are quite similar (closer than 99 
percent of set-class pairs), but not equivalent as is the case for aNGLE.

The correlation between dq in F6 and aNGLE is not particularly high, 
with r 5 .7 for cardinalities 3 through 6 and r 5 .52 for cardinalities 3 through 
9. a much higher correlation obtains between aNGLE and dq in F12, the  
twelve-dimensional space defined by the magnitudes for harmonics 1 through 
12. The correlation between dq in F12 and aNGLE is r 5 .94 and r 5 .93 for 
cardinalities 3 through 6 and 3 through 9, respectively. dq in F12 also correlates 
strongly with ISIM2 (Scott and Isaacson 1998), r 5 .88, and rECrEL (Castrén 
1994), .81 # r # .99, for cardinalities 3 through 9. We will consider the reason 
for this significantly higher correlation in §6.3.

6.2 Pitch-class sets in continuous space

as we saw in §5, it is necessary to consider an infinite number of harmonics of 
the octave in order to fully capture irrational pitch-class sets such as {0, 2, π}  
that do not belong to any equal tempered system. The spectrum of a given 
pitch-class set is a single point within an infinite dimensional Fourier space, 
F`, where each dimension corresponds to a unique harmonic of the octave. 
In theory, then, it should be necessary for a metric on the Fourier transform 
of continuous pitch-class space to be defined on F`, but there are reasons why 
we should not and, in fact, cannot do so, at least not if we wish for the results 
to be meaningful.

Let’s consider three harmonics of four pitch-class sets: P 5 {0, 0.46, 
0.95, 1.41}, Q 5 {0, 1.01, 6, 7.01}, R 5 {0, 3, 6, 9}, and a slight variation of R,  
R9 5 {0, 3.005, 6, 9.005}. The magnitudes of the first harmonic are p1 < 3.83,  
q1 < 0, r 1 5 0, and r 91 < 0. This harmonic divides the four pitch-class sets into 
two categories: the unbalanced set, P, and the balanced sets Q, R, and R9. 
The magnitudes of the second harmonic are p2 < 3.41, q2 < 3.41, r2 5 0, and  
r 92 < 0.01. This harmonic divides the four pitch-class sets into two different 
categories: those that correlate strongly with a twofold division of the octave, 
P and Q, and those that do not, R and R 9.
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These two harmonics provide different levels of resolution with which 
to investigate these pitch-class sets and thus give different types of informa-
tion about their harmonic content. While the first harmonic successfully dis-
tinguishes P from Q , its resolution is too low to discriminate between two 
different ways of obtaining balance within a pitch-class set: a maximally even 
distribution of all pitch classes in R, and a maximally even distribution of 
a pair of uneven dyads in Q. Likewise, while the second harmonic success-
fully distinguishes between Q and R, its resolution is too high to discriminate 
two different ways of correlating strongly with a tritone, by clustering around 
a single point, P, or by having an equal number of pitch classes clustered 
around two points a tritone apart, Q. Obviously, neither harmonic is successful 
at distinguishing R and R9. In order to make this type of fine distinction, it is 
necessary to use a very high frequency of resolution. Jumping (far) ahead to 
the 1200th harmonic, the magnitudes are p1200 5 q1200 5 r1200 5 4 and r 91200 5 0. 
The maximal magnitudes at z 5 1200 for P, Q, and R result from the fact that 
in each case all four pitch classes belong to the equal division of the octave 
into 1200 parts, or a cent scale. Since R9 contains two pitch classes from one 
cent scale and another two from the opposing cent scale, it has a magnitude of 
zero. (Opposed cent scales are separated by a transposition of one-half cent.) 
This harmonic successfully distinguishes R9 from R but provides far too high 
a resolution to distinguish P, Q , and R or any of the unique pitch-class sets in 
1200-tone equal temperament.

This example is purposely extreme in order to drive home the main 
point that different harmonics provide different levels of information about 
harmonic content. It is not that some harmonics are inherently superior to 
others, but that, depending on the application at hand, some harmonics will be 
more useful than others. If, for whatever reason, one wishes to investigate the 
harmonic difference between R and R 9, then it is necessary to use an extremely 
high harmonic and correspondingly high frequency of resolution.

The particular application at hand in this section is to measure the dis-
tance between pitch-class sets in a continuous harmonic space. If distances 
are taken between points in F` and all harmonics are weighted equally, then 
the difference between r1200 and r 91200, which is 4, will have a slightly greater 
effect on the measured distance than the difference between p1 and r1, which 
is approximately 3.83. However, the implicit assumption is that we wish for 
the measured distance to reflect our intuitions of perceived harmonic similar-
ity. Since R and R 9 are perceptually identical, the large difference between 
r 1200 and r 91200 is meaningless as a factor in measuring perceived distance.  
In other words, harmonic 1200 provides far too high a resolution for this 
particular application. at the other extreme, it is clear that harmonics 1 and 2 
together do not provide enough information to serve as the sole basis for mea-
surements of perceived distance—augmented triads and diminished seventh 
chords (which are certainly easily distinguishable sonorities!) both have zero 
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magnitude for harmonics 1 and 2. The trick is to find a set of harmonics that 
are both necessary and sufficient to serve as a basis for a reasonable metric of 
harmonic distance in continuous pitch-class space.22

There are two common solutions to this problem. The first is to weight 
dimensions in a descending manner. For example, suppose we scale the nth 
harmonic by 1/n: pn/n. Then differences in the first harmonic will be 1200 
times more important in determining distance than differences in the 1200th 
harmonic. For instance, according to this method of weighting dimensions, 
the weighted difference between r1200 and r 91200 is only 4/1200 < 0.0033, which 
would have the desired negligible impact on the overall distance. another 
solution is to simply take the first n harmonics as the basis for the Fourier 
space Fn, selecting n as appropriate. We will adopt the second approach, since 
it corresponds more closely with our approach to pitch-class sets in twelve-
tone equal temperament.

In order to get a feel for metrics in continuous pitch-class space, we will 
compare distances between two pitch-class sets, P and Q, where P is some given 
trichord and Q varies among all possible trichords. recall from §4.2 that the 
fundamental region of trichord set-classes is the triangular region graphed in 
Figure 22. To this two-dimensional region we add a third dimension that cor-
responds to normalized similarity, which varies from 0 to 1, indicating minimal 
and maximal similarity, respectively. The higher a point within the region is, 
the more similar its associated set-class, /Q/, is to the given comparison set-
class, /P/. Conversely, lower points correspond to set-classes that are relatively 
dissimilar to /P/. For example, Figure 25a plots the normalized similarity 
between the augmented triad and all trichord set-classes using the metric dpow

defined on the first six harmonics of the octave, or the space F6. Note that the 
plot contains a global maximum at the augmented triad, indicating maximal 
similarity to {0, 4, 8}, and a global minimum at the tripled unison, indicating 
minimal similarity. Note also the local peaks at or near {0, 0, 4}, {0, 2, 6}, and {0, 
2, 4}, and the slight ridge extending from {0, 0, 4} to both {0, 4, 8} and {0, 2, 4}. 
The center of this ridge corresponds to all trichordal set-classes that contain a 
major third—those set-classes of the form /{0, x, x 1 4}/. Thus, we can see the 
influence that the major third, the defining interval of the augmented triad, 
exerts over the similarity contour for the continuous space of trichords.

However, not all trichords containing a major third are judged to be 
equally similar to the augmented triad. The similarity contour takes into 

22 There is also a strictly mathematical problem. Consider 
the pitch-class sets P 5 {0, 4, 8}, Q 5 {0, 4 1 , 8 1 3}, 
and R 5 {0, , 3}, where  5 1/p, p [ Z. Taking p to be 
arbitrarily large, and thus  to be arbitrarily small, in F12p

dpow(P,Q) 5 dpow(P,R ). At the very least, we should want 
a set that is indistinguishable from {0, 4, 8} (Q) to be closer 
to the maximally even set than a set that is indistinguish-

able from the maximally uneven set (R)! This is because all 
three sets belong to 12p-tone equal temperament and their 
respective interval functions are maximally dissimilar. See 
Equations 11 and 36 with their accompanying discussions 
for more details. (The same problem exists for the angular 
distance in F`.)
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Figure 25. Plot of normalized similarity between {0, 4, 8} and all other trichordal set-classes 

based on dpow in (a) F6, (b) F12, and (c) F48

(a)

(b)

(c)
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account other important features of {0, 4, 8}, including its maximal fit with 
whole-tone and major-third cycles and its maximally even distribution of pitch 
classes. For instance, the peak at {0, 0, 4}, which also belongs to both whole-
tone and major-third cycles, is higher than the other local peaks at or near 
{0, 2, 4} and {0, 2, 6}. Of the two smaller peaks, the one near {0, 2, 6} is higher, 
since this set-class has a more even distribution of pitch classes than {0, 2, 4}. 
Measures of harmonic similarity that are based on the Fourier transform thus 
capture many features of a given chord.

also note that the similarity contour is smooth, such that set-classes lying 
near one another in the fundamental domain are judged to be roughly equal 
in their similarity to the augmented triad. This conforms to our expectation 
that similarity judgments should not be greatly affected by very small displace-
ments of chord members. This feature is directly related to the number of har-
monics taken into account. For example, Figure 25b is the contour map that 
obtains from distances based on the first twelve harmonics, F12, rather than 
just the first six. This contour is noticeably more jagged than Figure 25a, while 
the ridge corresponding to set-classes containing a major third has become 
less differentiated. These tendencies are even more pronounced in Figure 
25c, which is based on distances in the Fourier space defined by the first 48 
harmonics, F48. In the limit case, the normalized similarity based on dpow in Fn, 
where n goes to infinity, would yield a contour of similarity between {0, 4, 8} 
and all other trichords that consists of a single impulse at the augmented triad 
and an almost entirely undifferentiated, infinitesimally narrow ridge along 
set-classes containing a major third.23 In other words, the higher the value of 
n (and the greater number of harmonics taken into consideration), the more 
distances based on chord spectra become like those based solely on interval 
content, losing their unique and advantageous features along the way.

Figure 26 is a contour map of similarities based on distances in F6 mea-
sured by dq rather than dpow. a comparison of the graphs in 25a and 26 shows 
how similar the topographies resulting from dpow and dq are. Both contain the 
same ridge and three local peaks discussed above. at least when limited to 
comparing sets of the same cardinalities, dpow and dq (and their interval-vector 
based cousins, IcVSIM and aNGLE) correlate quite strongly. The sole excep-
tion occurs at the tripled unison, which is a global minimum according to the 
Euclidean metric but a rather strong peak according to angular distance.24

23 More precisely, the normalized similarity between  
{0, 4, 8} and all other trichords based on dpow in F` yields a 
contour map consisting of a single maximal spike of 1 at  
{0, 4, 8}, a ridge of .78 at all sets of the form {0, x, x 1 4} 
with the exception of a slight spike of .89 at {0, 0, 4} and 
slight dips of .74 and .7 at {0, 2, 6} and {0, 2, 4}, and a broad 
plain of .54 for all other sets except for cliffs of .48 and .4 
at sets of the form {0, x, 2x} and {0, 0, x} and a downward 
spike to 0 at {0, 0, 0}.

24 The spectrum of the maximally uneven set {0, . . . , 0} 
contains maximal magnitude in every harmonic. Thus, the 
vector associated with this spectrum points directly in the 
middle of that part of Fn defined by nonnegative values 
for each harmonic. This means that the maximum angular 
distance between the maximally uneven set and any other 
pitch-class set is 458 or π/4 radians.
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as discussed above, part of the strength and attraction of Fourier spaces 
is the flexibility to consider only those harmonics that are relevant to a specific 
context. For instance, most readers have been conditioned to hear anything 
belonging to twelve-tone equal temperament as “in tune” and (most) every-
thing else as more or less “out of tune.” This suggests that, all other things 
being equal, twelve-tone equal tempered chords will be perceived as more 
similar to one another than the neighboring “out of tune” chords. Since the 
twelfth harmonic measures the extent to which a set belongs to a twelvefold 
division of the octave, we can use this harmonic to help model this phenom-
enon, measuring distances in a seven-dimensional Fourier space defined by 
harmonics 1–6 and 12. (Note that this space does not contain harmonics 7–11.) 
Figure 27 once again shows the normalized similarity between trichords and 
the augmented triad, but here distances are measured with respect to this 
seven-dimensional Fourier space. The resulting contour map contains local 
maxima at each set-class associated with twelve-tone equal tempered chords, 
including those with pitch-class duplications. (Thus, the peaks in Figure 27 
correspond to the points labeled in Figure 22.)

6.3 More on Euclidean and angular distance on chord spectra and interval content

We have seen two metrics on chord spectra that correlate strongly with met-
rics on interval content. It was suggested that this strong correlation allows us 
to apply the intuitions about harmonic similarity that are implicit in promi-
nent similarity measures to continuous pitch-class spaces. But what are these 
intuitions? What exactly is the relationship between these metrics on chord 
spectra and interval content?

To understand the connection between these metrics, we must consider 
Lewin’s (1987) interval function (what mathematicians call the Patterson 
function). For a given set P, the interval function, which we will write as DP, is 
the set of all directed intervals between members of P : DP 5 {pi 2 pj mod 12}, 

Figure 26. Plot of normalized similarity between {0, 4, 8} and other trichordal set-classes 

based on dq in F6
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for all pi, pj [ P.25 For example, in the set Q 5 {0, 1, 3} there are three ways 
of moving by 0 (from any member of Q to itself) and one way of moving by 
intervals of 1, 2, 3, 9, 10, and 11 semitones. Thus, the interval function of Q is 
DQ 5 {0, 0, 0, 1, 2, 3, 9, 10, 11}. We could also write this set as a vector where 
the ith entry (beginning with i 5 0) corresponds to the multiplicity of i in the 
interval function; for example, DQ 5 (3, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1).

The relevance of the interval function is that, when measuring distance 
between twelve-tone equal tempered sets in F12 rather than F6, dq and dpow can 
each be rewritten in terms of the interval function. (See §8.) For example, we 
can rewrite Equation 9 as

dθ(P,Q)  arccos               .
P  Q 
PQ

 (10)

In other words, measuring angular distance in F12 is identical to measuring angu-
lar distance in the twelve-dimensional space defined by the interval function.26 
returning to a previous example, if P 5 {0, 3, 6} and Q 5 {0, 3, 6, 9}, then

DP 5 (3, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0),  
DQ 5 (4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0), 
DP ? DQ 5 3 ? 4 1 2 ? 4 1 2 ? 4 1 2 ? 4 5 36, 
|DP | 5 32  3  22    21,and |DQ| 5 4  42  8.

Thus, measuring angular distance in twelve-dimensional interval function 
space, we have

aNGLE12(P,Q) 5 arccos 
21  8
36 < arccos .982 < 10.98 or < .19 radians.

Figure 27. Plot of normalized similarity between {0, 4, 8} and all other trichordal set-classes 

based on dpow in the Fourier space defined by the magnitudes of harmonics 1–6 and 12

25 Lewin's interval function is actually defined on two sets, 
P and Q, and is the set of all directed intervals from mem-
bers of P to members of Q: IFUNC(P,Q) 5 {p 2 q mod 12} 
for all p[P and q[Q. We will write DP as an abbreviation 
for IFUNC(P,P ). 

26 More generally, for n-tone equal tempered sets, dq in Fn

is identical to measuring angular distance in n-dimensional 
interval-function space.
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Likewise, measuring angular distance in F12, we have

|FDP| 5 (1, 1, 1, 9, 1, 1, 1, 9, 1, 1, 1, 9), 
|FDQ| 5 (0, 0, 0, 16, 0, 0, 0, 16, 0, 0, 0, 16), 
|FDP| ? |FDQ| 5 3 ? 9 ? 16, 
F

P    3  92  9  16  7 , and 
F

Q    3  162  16  3 ,

which yields the same result:

 dθFP,FP 5 arccos
6   7  16  3

3  9  16 < 10.98 or < .19 radians.

It is this identity between angular distance measured on power spectra and the 
twelve-dimensional interval function that explains the high correlation noted 
above between d q, measured in F12, and aNGLE, based on the six-dimensional 
interval vector, because aNGLE correlates strongly with angular distance on 
interval functions.

Similarly, Euclidean-based metrics on chord spectra can be expressed in 
terms of the interval function. Consider dpow defined in F12 rather than F6. as 
measured in the twelve-dimensional space of power spectra, when applied to 
twelve-tone equal tempered sets Equation 6 may be simplified as

dpow(P,Q) 5 12 |DP – DQ|. (11)

That is, Euclidean distance between power spectra in F12 is identical (up to a 
constant scaling factor) to Euclidean distance between interval functions.27

Defined in F12, dpow correlates very strongly with Teitelbaum’s s.i (or the 
Euclidean distance between interval vectors), with r 5 .997. (Indeed, the two 
measures are nearly identical.) To the extent that this way of measuring dis-
tance captures something of our sense of harmonic similarity, dpow (in F12) 
allows us to apply this intuition in continuous pitch-class space.

The correlation between s.i. and IcVSIM is fairly weak (r 5 .41 for cardi-
nalities 3 through 9), so the strong correlation between dpow in F12 and s.i. can-
not be the reason for the strong correlation between dpow in F6 and IcVSIM.28 
The interpretation of dpow in either F6 or F12 is very similar, with the former 
differing from the latter in giving additional weight to the degree to which the 
relevant sets embed within a single whole-tone collection. Let OX and EX be the 
number of odd and even intervals in the interval function of X. The quantity 
OXEX represents the degree to which the members of X belong to opposing 
whole-tone collections.29 Equation 11 for dpow in F12 can be modified in the 

27 Again more generally, for n-tone equal tempered sets, dpow

in Fn is a scaled version of s.i. defined on the n-dimensional  
interval function rather than the -dimensional interval 
vector.

28 The correlation between dpow in F6 and a variant of IcVSIM 
defined on the interval function rather than the interval vec-
tor is similarly strong (r 5 .93 for cardinalities 3 through 9).

29 For example, consider three tetrachords: in X all four 
members belong to the same whole-tone collection, in Y 
there are three members in one collection and one member 
in the other, and in Z there are two members in each collec-
tion. Thus, we have OXEX 5 0 × 16 5 0, OYEY 5 6 3 10 5 60, 
and OZEZ 5 8 5 8 5 64, with the values increasing as the 
pitch classes are distributed more evenly between the two 
whole-tone collections.
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following way to yield the equation for dpow in F6:

dpow(P,Q)    6 P  Q     2(OP EP  OQ EQ  (OP EQ  OQ EP)). (12)

Essentially, the expression OPEP 1 OQ EQ – (OPEQ 1 OQEP) represents the degree 
to which P and Q are similarly divided between whole-tone collections. If the 
two sets are divided between whole-tone collections to the same degree—that 
is, OP 5 OQ and EP 5 EQ—then the value of the expression is 0. The maxi-
mum value for the expression occurs when one set is drawn from a single 
whole-tone collection while the other is as evenly divided between whole-tone 
collections as possible. While the difference between s.i. and IcVSIM is due 
to the manner in which each measure deals with comparisons between sets 
of different cardinalities, it is suggestive that the corresponding metrics on 
chord spectra, dpow in F12 and F6, differ not in terms of cardinality directly but 
in terms of whole-tone embedding.

6.4 Pitch sets

Defining distance between spectra is much more complicated for pitch sets 
than for pitch-class sets, because the spectra of pitch sets are continuous. To 
better understand the difficulties, let’s return to the three sets from the intro-
duction: Q 5 {G3, D4, F≥4, a4, E4}, R 5 {G3, B3, D4, a4, E4}, and S 5 {G3, B3, 
E≤4, a4, E4}. Musical intuition suggests that the spectra of R should be more 

Figure 28. Defining distance between pitch spectra in terms of area

(a)

(c)

(b)

(d)

abs(FQ 2  FR 2) abs(FR2  FS 
2)

FQ 2 and FR 2 FR 2 and FS 2
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similar to that of Q than to that of S, implying that Q and R should lie closer 
together in harmonic space than R and S. But how can we measure this dis-
tance? Since the spectra of pitch sets are continuous, we cannot use discrete 
summation as with pitch-class sets. Instead, we must rely on the analogous 
geometric concept of area. The spectra of Q and R are superimposed in Fig-
ure 28a, while the spectra of R and S are superimposed in Figure 28b. In both 
cases, the region bounded by the two spectra and vertical boundaries at x 5 0 
and x 5 1/2 is shaded. Equivalently, we can take the absolute value of the dif-
ference of two spectra and shade the region bounded by the resulting curve, 
the x-axis, and the same vertical boundaries, as shown in Figure 28, (c) and 
(d). The shaded regions in (a) and (c) are equal, as are the regions in (b) and 
(d). If we were to measure the area of the shaded regions, we would observe 
that the area of the region in (c) is less than that in (d). We can now make 
our intuitions of distance more concrete: one way to measure the distance 
between two spectra is to measure the area under the curve of their absolute 
difference, or squared difference, or any other means of measuring the dif-
ference between the two. Since the shaded region in (d) is larger than that 
in (c), the harmonic distance between R and S is greater than that between 
Q and R.

The “area under the curve” of a function, g(x), between vertical bound-
aries at x 5 a and x 5 b is denoted by the definite integral


a

b
g(x)dx. (13)

readers are encouraged not to be put off by the mathematical symbolism; the 
definite integral is simply the familiar notion of area from geometry applied 
to the more general setting of continuous functions. Fortunately, it is not nec-
essary to understand calculus to apply Equation 13. There are many elegant 
means of estimating definite integrals that can be easily implemented in a 
computer program. (See §8 for a simple algorithm to evaluate Equation 13.)

recall that the squared Euclidean distance between pitch-class sets is the 
sum of the squared differences between their discrete spectra. The analogous 
squared Euclidean distance between pitch sets is the area of the squared differ-
ences between their continuous spectra. as with pitch-class sets, it is necessary 
to decide which frequencies to include in the measurement of distance and 
whether to scale the differences in the magnitudes of these frequencies:

dpow(P,Q)       f (z)P(z)2  Q(z)22dz,
a

b
 (14)

where the frequencies included are a # z # b, and f(z) is the scaling factor.
as we did in Figure 25 for pitch-class sets, we can get a feel for metrics 

in continuous pitch space by comparing distances between a pitch set and all 
possible three-note pitch sets. The fundamental region for trichordal pitch 
sets is similar to that for pitch-class sets given in Figure 21, but without the 
vertical boundary on the right. That is, the space of all possible three-note 
pitch sets is an infinite wedge.
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Figure 29 plots the normalized similarity based on the Euclidian dis-
tance between {0, 5, 15} and all possible three-note pitch sets within a por-
tion of this infinite region. as before, similarity is indicated by height. For 
this example, we assume a range of frequencies from 0 to 1/2 and no scaling 
factor, f(z) 5 1. This range of frequencies covers all interval cycles generated 
by a whole-tone or larger interval and is analogous to defining a distance 
measure on pitch-class sets on the first six harmonics. (recall that the sixth 
harmonic has a frequency of 6/12 5 1/2.) There are four primary peaks in 
the resulting similarity contour graph: a global maximum at {0, 5, 15} and 
three local maxima at {0, 5, 10}, {0, 5, 20}, and {0, 10, 25}. In addition, there 
are noticeable ridges corresponding to pitch sets that contain at least one 
interval of 5, 10, or 15 semitones. This is the same phenomenon as discussed 
with reference to Figure 25 and demonstrates the influence of interval con-
tent on Fourier-based harmonic spaces. The reason for the local maxima 
at {0, 5, 10}, {0, 5, 20}, and {0, 10, 25} is that these pitch set-classes lie at the 
intersection of two of these ridges. The global maximum obviously lies at  
the intersection of all three.

Figure 29 is fairly jagged, with pronounced ridges, rather than smooth 
like Figure 25a, due to the lack of a scaling factor. all frequencies from 0 
to 1/2 have equal weighting. However, the range of frequencies from 1/4 
to 1/2 corresponds to all interval cycles between major seconds and major 
thirds, while the range from 0 to 1/4 corresponds to all interval cycles larger 
than (or equal to) a major third. These smaller interval cycles thus may be 
thought to have a disproportionate effect on the measured distance between 
pitch sets in a manner similar to the inclusion of higher frequencies in Fig-
ure 25, (b) and (c). By using a scaling factor, we can weight frequencies such 
that the effect of smaller interval cycles is lessened relative to larger interval 
cycles. One such scaling factor is f(z) 5 (1 2 2z)2, which is equal to 1 at z 5 0 

{0, 5, 10}

{0, 5, 20}

{0,10, 25}

{0, 5, 15}

{0, x, x + 5}

{0, x, x + 15}

{0, x, x + 10}

Figure 29. Plot of normalized similarity to {0, 5, 15} in a region of continuous space for  

three-note pitch set-classes based on dpow in the Fourier space defined by all frequencies 

from 0 to 1/2 with no scaling factor.



316 J O U r N a L  o f  M U S I C  T H E O r Y

and decreases to 0 at z 5 1/2. Figure 30 plots the similarity graph using this  
scaling factor. The basic profile of the graph remains the same, but the con-
tour has been smoothed, and the ridges corresponding to interval content are 
less pronounced.

For pitch sets drawn from twelve-tone equal temperament, Equation 14 
may be simplified in a manner nearly identical to the simplification of Euclid-
ean distance for pitch-class sets. assuming a range of frequencies from 0 to 
1/2 and no scaling factor, for twelve-tone equal tempered pitch sets Equation 
14 is equivalent to

dpow(P,Q)                       .
P  Q 

2
 (15)

For example, applying Equation 15 to the three-pitch set from the introduction  
yields a distance of 2 between Q and R and a distance of 10 between R and S, 
which is in agreement with our intuitions about the relative harmonic distances 
between these chords. Furthermore, given the closeness of Q and R in harmonic 
space, we would expect Q and S to be about as distant as R and S. This is indeed 
the case, with the measure yielding a distance of 12 between Q and S.30

We can also construct measures of angular distance between pitch spec-
tra that are analogous to aNGLE and dq. as with Euclidean distance between 
pitch spectra, it is necessary to replace the discrete summations of Equation 9 
with definite integrals:

dθ(P
2,Q2)  arccos                       ,

FPO
2  FQO

2
a

b

FPO  FQO
 

a

b

a

b  (16)

Figure 30. Plot of normalized similarity to {0, 5, 15} in a region of continuous space for  

three-note pitch set-classes based on dpow in the Fourier space defined by all frequencies from 0 

# z # 1/2 scaled by the function f(z) = (1 – 2z)2.

30 There are many choices of a, b, and f(z ) such that  
Equation 14 simplifies to Equation 15 (up to a constant scal-
ing factor). See §8.
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where, for any function g(x), g (x )  
a

b
is the “magnitude” of the function g(x) 

between a and b, defined as 
a

b
g (x )     � g (x ).a

b (We could also add a scaling 
factor if desired.) as with angular distance for pitch-class power spectra, we 
begin with pointwise multiplication of the two pitch power spectra. Instead of 
summing this result, we find the area of the multiplication of the power spec-
tra and divide this area by the maximum possible value. The more similar the 
two power spectra, the larger the area of their multiplication and the closer 
the value of the numerator to the denominator; that is, the more similar the 
two power spectra, the closer the fraction is to 1 and the arccos is to 0.31

as with Euclidean distance, angular distance may be simplified for pitch 
sets drawn from twelve-tone equal temperament. Indeed, assuming a frequency 
range of 0 to 1/2 and no scaling factor, Equation 16 simplifies to Equation 10 
for twelve-tone equal tempered pitch sets. applying this simplified equation 
to the three pitch sets from the introduction yields angular distances that are 
in relative agreement with dpow: .257 between Q and R, .604 between R and S, 
and .666 between Q and S.

While s.i., IcVSIM, and aNGLE were originally defined on pitch-class 
sets, we can easily apply them to pitch sets, keeping in mind that interval 
vectors for pitch sets are infinite-valued vectors of undirected pitch intervals 
rather than finite-valued vectors of interval classes.32 This will allow us to com-
pare distance measures for pitch sets that are based on chord spectra with those 
based on interval vectors as we did with pitch-class sets in §6.1.1 and §6.1.2. 
It is difficult to compare measures of distance between pitch sets due to the 
enormous (indeed, infinite) space of all possible pitch sets. However, based on 
comparisons made within smaller portions of this space, both dpow and dq cor-
relate strongly with s.i. and aNGLE. Consider the space of all possible vertical 
aggregates up to transposition and inversion. (a vertical aggregate is a chord 
in which every pitch class is represented exactly once.) Furthermore, limit the 

Table 1. Average correlations between dpow,  
dq , s.i., and ANGLE for vertical aggregates  
spanning less than six octaves

dpow dq s.i. ANGLE

dpow 1   
dq .97 1  
s.i. .97 .99 1 
aNGLE .96 .87 .88 1

31 A program to calculate values of dpow and dq for specific 
values of a, b, and f(z ) is available at the author’s Web site, 
http://mailer.fsu.edu/~ccallend.

32 One measure specifically proposed for pitch sets is Mor-
ris’s PM (1995), where pitch sets are compared on the basis 
of the intersection of their interval vectors and pitch con-
tent. Focusing on the intersection of interval vectors and 

cast as a measure of distance rather than similarity, Mor-
ris’s approach is to sum the absolute differences of two  
interval vectors: PM(P,Q) 5 S

i
 pi 2 qi, where pi and qi are  

the multiplicities of interval i in P and Q, respectively. 
Buchler’s (1997) pSATSIM adapts PM to compare pitch sets  
of different cardinality.
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space to aggregates that span less than six octaves. Taking random samples of 
100 of these pitch sets and comparing all pairs of sets yields strong average 
correlations among all four measures, shown in Table 1.

Figure 31 shows several vertical aggregates from Witold Lutosławski 
and Elliott Carter (Stucky 1981, Carter 2002). Since each chord contains all 
twelve pitch classes, the differentiation between these twelve-note chords is 
due entirely to their spacing. The two composers preferred to work with very 
different types of vertical aggregates. Carter often worked with all-interval 
twelve-note chords in which adjacent pitches (ordered by pitch height) form 
every interval from a minor second (or ninth) to a major seventh. In contrast, 
Lutosławski typically used vertical aggregates in which the intervals between 
adjacent pitches are very limited:

The fewer kinds of interval that are in your twelve-note chord, the more char-
acteristic is the quality, the physiognomy of the chord, the result. That’s one 
rule because if you add other intervals, it [i.e., the chord] loses its character 
gradually up to the moment when it’s absolutely gray—without any quality at 
all—if you use all possible intervals in one single chord or in one single melody. 
It loses the physiognomy. It loses the character. (rust 1995, 215)
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 31. Vertical aggregates in Lutosławski (a–f) and Carter (g–i): (a) Mi-parti; (b) Jeux 

vénitiens; (c and d) Second Symphony; (e and f) Paroles tissées; (g) Night Fantasies; (h) In 

Sleep, In Thunder; (i) Fourth String Quartet
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We know from Equation 15 that, for equal tempered pitch sets, comparing 
chords on the basis of the Euclidean distance between their power spectra is 
essentially the same as comparisons based on the Euclidean distance between 
their interval functions. Thus, we can compare the Lutosławski and Carter 
aggregates using Equation 15, which is much easier to calculate than Equa-
tion 14. We can also get a more intuitive understanding of the Euclidean dis-
tance between power spectra or interval functions by expanding and rewriting 
Equation 15 in terms of interval function magnitudes:

dpow(P,Q)                               P   Q .
P 2  Q 2

2
 (17)

For pitch set P the magnitude of its interval function is P        pi
2

i
where pi

is the multiplicity of i in DP. This magnitude can be interpreted as a measure 
of a chord’s “distinctiveness.” The more a chord’s interval content is concen-
trated in a few intervals, the higher its interval function magnitude and the 
more characteristic its harmonic quality. Table 2 ranks the chords of Figure 
31 by their normalized interval function magnitudes. (In order to make these 
numbers easier to interpret, the magnitudes are normalized so that the mini-
mum possible value of 276 is mapped to 0 and the maximum possible value 
of 34 is mapped to 1.) as a point of reference, the average normalized interval 
function magnitude for vertical aggregates spanning less than six octaves is 
.45. The chords of Figure 31 cluster into two groups: Lutosławski’s chords have 
significantly higher interval function magnitudes than average, while Carter’s 
all-interval aggregates have noticeably lower magnitudes.

In Equation 17, the expression P 2  Q 2
2

gives the maximum distance 
between the power spectra of P and Q as the average of their squared interval 
function magnitudes. The larger this average, the greater the potential distance 
between the chords. From a geometric perspective, the interval function mag-
nitude indicates how far a chord is from the center of a harmonic space based 
on the interval function or chord spectra. Chords with high interval function  
magnitudes lie near the extremes of the space and have the potential to 
be quite distant from one another, while chords with relatively low interval  
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Table 2. Normalized interval function 
magnitudes for the chords in Figure 31

chord normalized magnitude

E .80
F .79
A .77
B .76
C .75
D .74
I .35
G .33
H .31
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function magnitudes lie near the center of the space. This geometric per-
spective helps to make Lutosławski’s intuitive comments more precise. Due 
to their location at the extremes of harmonic space, Lutosławski’s twelve-note 
chords have the potential to be highly dissimilar and readily differentiable 
(due to their “characteristic quality”). In contrast, since all-interval aggregates 
are clustered near the center of the space, they are likely to be relatively close 
to one another, yielding chords that are relatively similar (or “gray”) and not 
readily differentiable.

The expression DP • DQ in Equation 17 essentially measures the degree 
to which P and Q are “similarly distinctive.” The greater the extent to which 
the vectors of their respective interval functions point in the same direction, 
the closer this dot product is to their average interval function magnitudes, 
and the smaller the distance between the two chords. The dot product van-
ishes when the chords have no intervallic content in common, yielding a dis-
tance between the two chords that is equal to their average squared interval 
function magnitudes.

Table 3 shows the pairwise Euclidean distances (according to Equa-
tion 15) between chords in Figure 31 in three groups: (a) distances between 
Lutosławski’s aggregates, (b) distances between Carter’s all-interval aggregates, 

Table 3a. Euclidean distances between chords 
from Lutostawski in Figure 31

A B C D E F

a 0     
B 4.5 0    
C 19.2 19.3 0   
D 19.5 19.6 2.0 0  
E 19.7 19.0 20.5 20.3 0 
F 18.8 18.1 19.8 19.7 4.0 0

Table 3b. Euclidean distances between chords 
from Carter in Figure 31

G H I

G 0  
H 7.5 0 
I 8.1 7.9 0

Table 3c. Euclidean distances between chords 
from Lutostawski and Carter in Figure 31

A B C D E F

G 14.7 14.7 14.4 14.4 16.6 15.8
H 16.4 16.4 14.8 14.4 15.3 15.1
I 16.1 16.2 14.6 14.4 16.0 15.6
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and (c) distances between the two different types of chords.33 as a point of 
reference, the average Euclidean distance between random vertical aggregates 
spanning less than six octaves is approximately 10. The extremes of distances 
are in group (a). Chords that are built on the same limited pitch intervals are 
very close together: tritones and perfect fifths or minor seconds in chords A 
and B, major seconds and perfect fourths or fifths in chords C and D, and major 
and minor thirds (with the single exception of a minor second) in chords E 
and F. all other distances in group (a) are quite high, confirming our intu-
itions based on their extreme positions within harmonic space. The all-interval 
aggregates are somewhat closer than average to themselves (b) and more dis-
tant than average to Lutosławski’s aggregates (c), but the distances in both of 
these groups fit within the extremes of group (a). Indeed, the average distance 
between all-interval aggregates (not limited to the three in Figure 31) and ran-
dom aggregates of less than six octaves is approximately 10, the same as the aver-
age distance between random aggregates. This lends support to Lutosławski’s 
characterization of these chords as “gray” and less “characteristic.”

I close this section with an example that approximates continuous pitch 
space through the extensive use of microtones. The opening chord of Gérard 
Grisey’s Partiels is drawn from the overtone series of an E1 fundamental. 
(See Figure 32a.) Over the course of the first three minutes, the piece moves 
progressively from pure tones to noise, periodic to aperiodic rhythms, and 
harmonic to inharmonic chords. The latter is achieved through a series of 
discrete harmonic changes given in Figure 32b, where open note heads indi-
cate pitches belonging to an E1 harmonic series and filled note heads indi-
cate inharmonic pitches. In order to follow this progression from harmonic 
to inharmonic sonorities, we can measure the degree to which each chord 
resembles a harmonic series over an E1 fundamental. Specifically, we can mea-
sure the Fourier magnitude of this fundamental frequency for the spectrum 
of each chord, keeping the following in mind:

(1) Since the relevant cycles are frequency rather than interval cycles, 
chord members should be represented by their absolute frequen-
cies rather than log-frequency pitches. For example, chord 1 con-
tains E1 < 41.2 Hz, B3 < 123.47 Hz, and so forth.

(2) While shifting of interval cycles corresponds to transposition, the 
shifting of frequency cycles corresponds to frequency shifting—
a technique common in the music of spectral composers such as 
Grisey and Murail (rose 1996). For example, a two-note chord with 
frequencies of 180 Hz and 380 Hz belongs to a 200-Hz cycle that 
has been shifted down by 20 Hz, resulting in a phase shift by 1/10 

33 These distances correlate well (r 5 .94) with Morris’s 
PM (and therefore Buchler’s pSATSIM). Michael Buchler 
shared unpublished work with me that relates large chords 

in Lutosławski and had previously noticed similar relation-
ships between large chords in Lutosławski and Carter using 
pSATSIM.



322 J O U r N a L  o f  M U S I C  T H E O r Y

callender_fig32  (section) /home/jobs/journals/jmt/j4/callender  Fri Jul 31 11:14 2009  Rev.2.14 100% By: bonnie  Page 1 of 1 pages

² ¦
↓

¦1/6
↓

¦1/6
↓

²² ¦1/6
↓

²²

¦
↓

¦1/6
↓

²²

¦
↓

¦
↓

¦1/6
↓

²²

¦
↓

¦
↓

¦1/6
↓

²²

¦
↓

¦
↓

¦1/6
↓

²²

¦
↓

¦1/6
↓

²² ¦1/6
↓

²²

¦1/6
↓

²² ¦1/6
↓

² ¦1/6
↓

² ¦
↓

+

+

+

Š

Š
Ý

ððð

ððð
ððð

²² ²

ðð
ðð

ðððð

ððððððððððð
²²²²²²

ðð
ð

ððð

ðððð
ððððððð

²²²²²

ðð
ðð

Łðððð

ðððððððððð
²²²²

ðð
ðð

Š

Š
Ý

Łðððð

ððððððððððð
²²² ²²

ðð
ð

Łðððð

ðððððððððð
²² ² ²

ðð
ðð

ŁŁŁððð

ððððððððð
²²² ²

ðð
ð

ðŁ
ðð

Łðð
ðððððð²² ²

ðð
ðð²

Š

Š
Ý

ðð

Łðððððððð²²

ðð
Łð−

ðŁ¦¦

ð

ŁðððŁŁððð²²−²

ðð
Ł
ð

ððŁðð
ð

²

ðŁð
ŁŁŁŁŁŁ²²−

ðŁðð²²

ðŁŁŁðŁŁŁŁŁŁ
²²− Ł²

 !

 !

 !
= quarter-tone sharp; = eighth-tone flat; = sixth-tone flat

1 2 3

4 5 6 7

8 9 10 11

JMT 52:1 A-R Job 149-4 Callender Figure 32

(a) (b)

Figure 32. (a) Opening chord of Grisey’s Partiels. (b) Gradual change from harmonic to 

inharmonic chords in the opening section of Partiels. (Adapted from Rose 1996.)
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of a cycle. Instead of indicating a harmonic relation with a funda-
mental of 200 Hz, this maximal correlation with a phase-shifted 
cycle indicates that the chord is a frequency shifted version of a har-
monic relation. Since we are only interested in the degree to which 
the sonorities in the opening of Partiels correspond to a harmonic 
series on E1, we are only concerned with cycles that have a phase 
of 0. This means that it is sufficient to evaluate the cosine portion 
of Equation 1:

  FyP(z) 5 S
f [P

cos(2πfz).

(3) Lower pitches are more important in establishing a harmonic spec-
trum than higher ones. For example, in a chord that is otherwise 
based on the harmonic series, a pitch lying halfway between the 
16th and 17th partials is of far less consequence than a pitch half-
way between the second and third partials. One way to model this 
phenomenon is by weighting each frequency, f, according to its 
ratio with the E1 fundamental, f0:

  S
f [P 

−fof  cos(2πfz).

(4) Because the number of notes and the cumulative weightings of 
frequencies vary from chord to chord in the opening of Partiels, the 
magnitude of each chord (with respect to the E1 fundamental) will 
be normalized to aid in their comparison:

 

cos(2πf z)
f P

fo
f


f P

fo
f

.

 

(18)

Evaluating Equation 18 with z equal to the frequency of E1 (<41.2 Hz) yields the 
normalized magnitude of a chord with respect to this fundamental. The higher 
this magnitude (where the values range from 0 to 1), the greater the correlation 
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(a) (b) Table 4. Normalized magnitudes with respect 
to an E1 fundamental in the opening of Partiels

chord normalized magnitude z < 41.2 Hz

1 .87
2 .91
3 .90
4 .87
5 .88
6 .82
7 .77
8 .69
9 .38
10 .08
11 .01
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between a chord and a harmonic series on E1. The normalized magnitudes 
with respect to an E1 fundamental for the opening chords in Partiels are given 
in Table 4. after the opening five chords, which are quite harmonic, the sonor-
ities become progressively less harmonic. It is also clear from Table 4 that the 
rate of change from harmonic to inharmonic sonorities increases dramatically  
toward the end of the section. This is consistent with Grisey’s stated preference 
for accelerating, rather than linear, rates of change (Grisey 1987).

7. The Z-relation problem

Consider the following question: Given a pitch-class set-class, /P/, in a given 
tempered space, is P Z-related to any other set-classes and, if so, which?34

at present, answers to this question must in general resort to an exhaustive 
search of a given pitch-class universe by finding all set-classes and comparing 
their interval vectors. While this brute-force approach will invariably answer 
the question posed (eventually! the number of set-classes to check grows expo-
nentially as the number of pitch classes per octave increases), the result does 
not yield an understanding of the deeper structural properties Z-related sets 
share. The lack of a general explanation of Z-related sets and our inability to 
predict these relations is referred to as the “Z-relation problem.”35 In continu-
ous spaces the problem is worse, since it is impossible to conduct an exhaustive 
search of an infinite number of sets. For example, how would one determine 
whether {0, 2, 2 1 3, 6} possesses a nontrivial Z-related partner? In order 
to show that continuous spaces not only make the problem more acute but 
also point the way toward a possible solution, we consider the following three 
cases, each of which generates an infinite number of Z-relations.

Case 1

Let P and Q be the pitch-class sets {0, 6}O and {0, 3}O, respectively, and Sx be the 
union of P and the transposition of Q by x, Sx 5 P < Tx(Q). We wish to show 
that Sx and S–x are Z-related by demonstrating that their spectra are equivalent. 
The spectra of P and Q are |FP| 5 (2, 0, 2, 0, . . . ) and |FQ| 5 (2, 2, 0, 2, 2, 
2, 0, 2, . . . ). Where the spectrum for either P or Q is zero, the spectrum of 

34 In the common understanding of the Z-relation, two sets, 
P and Q, are Z-related if DP 5 DQ and P and Q are not related 
by transposition or inversion. In this section, it will be advan-
tageous to use a more relaxed definition of the Z-relation 
that includes sets related by transposition and inversion.

35 One attempt at a more general explanation of the  
Z-relation is the generalized hexachord theorem (Lewin 
1987). This theorem states that in 2k-tone equal tempera-
ment, pitch-class sets of k elements are Z-related to their 
complements. While important, this result is of limited value 

in continuous spaces. A more recent partial explanation of 
the Z-relation is Stephen Soderberg’s (1995) “Q” inversion, 
a dual inversion that preserves interval content and thus can 
be used to generate Z-related sets. Mathematicians refer to 
Z-related sets as homometric sets, which have been studied 
by Bullough (1961) and Rosenblatt (1984), among others. A 
more thorough investigation of the Z-relation problem is the 
focus of ongoing research between Rachel Hall and myself 
(Callender and Hall 2007) that draws upon existing math-
ematical work on homometric (or Z-related) sets.



325Clifton Callender  Continuous Harmonic Spaces

S6x is equal to the nonzero magnitude. Thus, where k is odd, |FS6x (k)| 5 2; 
where k [ 2 mod 4, |FS6x (k)| 5 2. The spectrum of S6x thus takes the form

|FS6x | 5 (c0, 2, 2, 2, c1, 2, 2, 2, . . . ),

where cj is the magnitude of harmonic 4j. Multiplying Sx and S–x by 4, we have 
M4(Sx) [ {0, 0, 4x, 4x} and M4(S–x) [ {0, 0, –4x, –4x}, where multiplication is 
taken mod 12. Since M4(Sx) and M4(S–x) are related by inversion, their spectra 
are identical for all harmonics. recalling the multiplication principle from 
property (2) of §5, this implies that Sx and S–x have the same spectra for all 
harmonics of the form 4j. Thus, for k [ 0 mod 4, |FSx

(k)| 5 |FS–x
(k)|, which 

demonstrates that the spectra of Sx and S–x are equal and that these sets are 
Z-related. More generally, every member of /Sx/ is Z-related to every mem-
ber of /S–x/.36 For a familiar specific example, if x 5 1, then Sx and S–x are the 
tetrachords {0, 1, 4, 6} and {11, 0, 2, 6}, which are members of the well-known 
Z-related set-classes 4-Z15 and 4-Z29, respectively. For a less familiar example, 
if x 5 1−12, then Sx 5 {0, 1−12, 4−12, 6} and S–x 5 {10−12, 0, 1−12, 6}, which are Z-related 
sets in eight-tone equal temperament.37 (a chromatic step in eight-tone equal 
temperament is equal to 1−12 semitones.)

Case 2

Let P 5 {0, 4, 8}O, Q 5 {0, 2}O, and (as before) Sx 5 P < Tx(Q). again, Sx and S–x are 
Z-related, as we can demonstrate by inspecting the spectra of P and Tx(Q) inde-
pendently and combined. Taken independently, the spectra of P and Q are

|FP| 5 (3, 0, 0, 3, 0, 0, . . . ) 

and

|FQ| 5 (2, 3, 1, 0, 1, 3, 2, 3, 1, 0, 1, 3, . . . ).

Notice that one of the two spectra is always zero except for harmonics divisible 
by 6. Thus, we know that the spectrum of S6x takes the form

|FS6x| 5 (c0, 3, 1, 3, 1, 3, c1, 3, 1, 0, 1, 3, . . . ),

where cj is the magnitude of harmonic 6j. Similar to case 1, multiplying Sx and 
S–x by 6 yields M6(Sx) ; {0, 0, 0, 6x, 6x, 6x} and M6(S–x) ; {0, 0, 0, –6x, –6x, –6x}. 
Since these two sets are related by inversion, by the multiplication principle 
Sx and S–x we have the same spectra for all harmonics of the form 6j, which 
demonstrates that /Sx/ and /S–x/ are Z-related. a familiar example is given by 
x 5 1, which yields the Z-related set-classes SC 5-Z17 5 /{0, 1, 3, 4, 8}/ and SC 
5-Z37 5 /{11, 0, 1, 4, 8}/.

From the first two cases, we generalize that if P is a division of the octave 
into n equal parts and Q is a dyad that divides the equal divisions of P in half, 

36 Three of these Z-relations are trivial: if x 5 0 or 6, then  
Sx 5 S–x; if x 5 3, then Sx 5 T6(S–x).

37 See Soderberg 1995 for how this particular Z-related pair 
relates to his Q-inversion.
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then we can combine P and Q to form an infinite number of Z-related sets. 
Specifically, let P 5 {0, 12/n, 2 ? 12/n, . . . , (n 2 1) ? 12/n}, Q 5 {0, 6/n}, and 
Sx 5 P < Tx(Q). Then /Sx/ and /S–x/ are Z-related. The only examples of this 
type of Z-relations in twelve-tone equal temperament are the tetrachords and 
pentachords already mentioned. However, we can see this principle at work 
among Z-related hexachords in sixteen-tone equal temperament, where the 
chromatic step is equal to 3/4 semitones. Temporarily switching to a unit of 
pitch that is equal to 1/16 of an octave, the fourfold equal division of the 
octave that includes pitch class 0 is P 5 {0, 4, 8, 12}O. Dividing this equal divi-
sion in half yields Q 5 {0, 2}O. If x 5 1, then Sx 5 {0, 1, 3, 4, 8, 12}O and  
S–x 5 {15, 0, 1, 4, 8, 12}O. Both /Sx/ and /S–x/ have the (eight-valued) interval 
vector k21242022l.

Case 3

We begin with a slight variation of case 1, in which pitch class 0 of Q is doubled: 
let P 5 {0, 6}O, Q 5 {0, 0, 3}O, and Sx be defined as always. Doubling pitch class 0 
alters the spectrum of Q such that it never equals zero: |FQ| 5 (3, 5, 1, 5, 3, 
5, 1, 5, . . . ). In order to determine the spectrum of S6x, we must consider 
those harmonics where the spectrum of P is not zero, which is precisely for all 
even harmonics. Multiplying Sx and S–x by 2, we have M2(Sx) ; {0, 0, 2x, 2x, 2x 6 6}  
and M2(S–x) ; {0, 0, 22x, 22x, 22x 6 6}. Since M2(Sx) and M2(S–x) are related 
by inversion, then by the multiplication principle we know that the spectra of 
Sx and S–x are equal for all even harmonics. Thus, once again, the spectra of Sx 
and S–x are equal, and the two sets are Z-related.

alternatively, instead of simply doubling pitch class 0, we could split it 
into a pair of pitch classes arranged symmetrically about 0: Q 5 {–y, y, 3}O. 
Once again, we know that the odd harmonics of Sx and S–x are equal, since the 
spectrum of P vanishes for these harmonics. Likewise, we know that the even 
harmonics of Sx and S–x are equal, since M2(Sx) and M2(S–x) are related by inver-
sion. Thus, by the now-familiar chain of reasoning, Sx and S–x are Z-related. 
Familiar specific Z-related set-classes arise for x 5 2 and y 5 1, which yields SC 
5-Z12 5 /{0, 1, 3, 5, 6}/ and SC 5-Z36 5 /{9, 11, 0, 1, 6}/, and for x 5 1 and y 5 2,  
which yields SC 5-Z18 5 /{11, 0, 3, 4, 6}/ and SC 5-Z38 5 /{9, 0, 1, 2, 6}/.

The same principle holds if we split pitch class 3 instead of pitch class 
0: Q 5 {0, 3 – y, 3 1 y}O. In fact, the same principle holds if both pitch classes 0 
and 3 are split. Leaving the details for the interested reader, if Q 5 {–y, y, 3 2 z,  
3 1 z}O, then Sx and S–x are Z-related. Three familiar Z-related hexachord pairs 
belong to the infinite number of such pairs generated in this way:

(1) for x 5 1/2, y 5 3/2, and z 5 1/2, S6x yields 6-Z10/39;
(2) for x 5 1/2, y 5 5/2, and z 5 3/2, S6x yields 6-Z24/46; and
(3) for x 5 3/2, y 5 5/2, and z 5 5/2, S6x yields 6-Z26/48.
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The general principles derived from these and similar cases are sufficient to 
generate many Z-related sets, including Z-triples, Z-quadruples, and so forth, 
but such an undertaking is well beyond the scope of the present article.38

8. Mathematical appendix
8.1 Fourier transform of pitch sets

In this section I summarize the mathematics underlying much of the forego-
ing. First, we represent the pitch p by the delta function at p, d(x 2 p), where

d(x 2 p) 5 0 for x  p, and 



d(x 2 p)dx 5 1. (19)

Intuitively, d(x 2 p) can be thought of as an impulse at x 5 p representing one 
unit of pitch p.

Next, we represent the pitch set P by its characteristic function

xP(x) 5 S
p[P
d(x 2 p). (20)

That is, the characteristic function of P is a set of unit impulses located at the 
members of P.

The Fourier transform of the function f (x) is given by

F(z) 5 



f (x)e 2πizx dx. (21)

More specifically for our purposes, since





d(x)f(x)dx 5 f (0), (22)

the Fourier transform of the delta function at p is





d(x 2 p)e 2πizx dx 5 e 2πizp. (23)

Since the Fourier transform is linear, the transform of the sum of two functions 
is the same as the sum of the transforms of the individual functions. That is, if 
F(z) and G(z) are the Fourier transforms of f(x) and g(x), then the transform 
of f(x) 1 g(x) is F(z) 1 G(z). Thus, the Fourier transform of the characteristic 
function of P is the sum of the transforms of its component pitches:

FP(z) 5 S
p[P

e 2πipz. (24)

Using Euler’s identity, we substitute cosq 1 i sinq for e iq in Equation 24 to yield 
the Fourier transform of the characteristic function of P expressed in terms 
of sines and cosines:

FP(z) 5 S
p[P

cos(2πpz) 1 isin(2πpz). (25)

The magnitude of any complex number, a 1 ib, is the square root of the  
number multiplied by its complex conjugate, a – ib:

a  ib         a  ib)a  ib)    a 2  b 2) . (26)

38 For examples of Z-triples and Z-quadruples, see Lewin 
(1982) and Soderberg (1995).
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Thus, the magnitude, or modulus, of FP(z) is

FP(z)        
pP
 

sin(2πpz)
2

pP
 

cos(2πpz) .
2  (27)

8.2 Simplifying dpow and dq

We begin with the mathematical operation of convolution to see how the 
Fourier transform and the interval (or Patterson) function are related. 
For our purposes, the convolution of two characteristic functions, written  
xP(x) ∗ xQ(x), is

xP(x) ∗ xQ(x) 5     Sd(x 2 (p 1 q)). (28)

another way of stating this is that the convolution of xP(x) and xQ(x) yields the 
characteristic function of their direct sum, xP(x) ∗ xQ(x) 5 xP %Q(x), where P % 
Q 5 {p 1 q | p [ P, q [ Q }.39 In the special case of the direct sum of P and –P 
(the inversion of P about 0), we have the interval function of P :

P % 2 P 5 S
i,j 

pi 2 pj 5 DP. (29)

Now, the spectrum of P can be obtained by multiplying the Fourier transforms 
of P and –P :

FP        FP • FP .. (30)

By the convolution theorem, multiplying the Fourier transforms of two func-
tions, f and g, is the same as taking the Fourier transform of the convolution 
of these functions:

Ff ? Fg 5 Ff ∗ g . (31)

Putting together Equations 30 and 31, the power spectrum of P is equal to 
the Fourier transform of the convolution of P and –P, which is the interval 
function of P :

|FP|2 5 FP ∗ 2P 5 FDP . (32)

Thus, wherever the power spectrum is used in the metrics discussed in §6, we 
can substitute the Fourier transform of the interval function. For example, 
Equation 9 may be rewritten as

dθ(P,Q)  arccos                .
F

P  FQ

F
P FQ

 (33)

Second, the Fourier transform preserves the dot product (up to a con-
stant scaling factor). (This property is known as Parseval’s theorem.) That is, 

39 The direct sum is essentially the same as Cohn’s trans-
positional combination and Boulez’s pitch multiplication  
(Cohn 1991, Boulez 1971, Heinemann 1988).

p[P, q[Q
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
cos(θhi  θjk)  cos(θhi  θjk)  cos(φhi  φjk)  cos(φhi  φjk)

2 cos(θhi  φjk)  cos(θhi  φjk) 1/2.

X ? Y is proportional to FX ? FY. Thus, in Equation 33 we can substitute DX for 
FDX and rewrite the equation as

dθ(P,Q)  arccos               .
P  Q
P Q 

 (34)

We can simplify Equation 6 similarly:

dpow(P,Q)  FP 2  FQ2

 F
P  F

Q

 P  Q .

 (35)

For n-tone equal tempered pitch-class sets, the above simplifications of dq and 
dpow are only true when evaluated in F kn, where k is any positive integer. Specifi-
cally, in this case we have

dpow(P,Q) 5 kn|DP – DQ|. (36)

When these two measures are evaluated in Fourier spaces defined by other 
harmonics, their simplification in terms of the interval function is more com-
plicated. recall that for twelve-tone equal tempered pitch-class sets, dpow in F6

simplifies to Equation 12. In order to understand these more complicated situa-
tions, we first make use of Equation 3 to rewrite Equation 6 so that dpow(P,Q) is

Where qab 5 2π(pa 2 pb)z, fab 5 2π(qa 2 qb)z, and each summation is over all h, 
i, j, and k, and over z 5 −112, . . . ,

kn/2
12 . Where (ph 2 pi) 6 (pj 2 pk), (qh 2 qi) 6 (qj

2 qk), or (ph 2 pi) 6 (qj 2 qk) are not congruent to 0 mod n, the summation of 
the corresponding cosines for a given h, i, j, and k over all z vanishes. Where 
(ph 2 pi) 6 (pj 2 pk), (qh 2 qi) 6 (qj 2 qk), or (ph 2 pi) 6 (qj 2 qk) are congruent 
to 0, the summation of the corresponding cosines for a given h, i, j, and k over 
all z is equal to kn. The number of ways in which (ph 2 pi) 6 (pj 2 pk) ; 0 is 
given by 2|DP|2. Likewise, the number of ways in which (qh 2 qi) 6 (qj 2 qk) ; 
0 and (ph 2 pi) 6 (qj 2 qk) ; 0 is given by 2|DQ|2 and 2|DP ? DQ|, respectively. 
Thus, evaluating n-tone equal tempered pitch-class sets by dpow in Fkn, we can 
rewrite Equation 37 as

dpow(P,Q)    kn  P 2  Q 2  2 P �Q ,               (38)

which simplifies to Equation 36.
Where n is even and dpow is evaluated in Fkn/2, where k is any odd positive 

integer, this situation is the same with one exception. Where (ph 2 pi) 6 (pj 2 
pk), (qh 2 qi) 6 (qj 2 qk) or (ph 2 pi) 6 (qj 2 qk) are odd, the summation of the 
corresponding cosines for a given h, i, j, and k over all z does not vanish, but is 
equal to –1. The number of ways in which (ph 2 pi) 6 (pj 2 pk) is odd is given 

(37)
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by 4OPEP, where OX and EX are the number of odd and even intervals, respec-
tively, in the interval function of X. Likewise, the number of ways in which (qh

2 qi) 6 (qj 2 qk) and (ph 2 pi) 6 (qj 2 qk) are odd is given by 4OQEQ and 2(OPEQ

1 OQEP), respectively. Since the summations involving qhi 6 qjk and fhi 6 fjk are 
halved in Equation 37, this yields the right side of the expression in the square 
root of Equation 12, 2(OPEP 1 OQEQ – (OPEQ 1 OQEP)). Thus, for n even and k 
odd, the Euclidean distance between the power spectra in Fkn/2 of pitch-class 
sets in n-tone equal temperament is

dpow(P,Q)          P  Q     2(OP EP  OQ EQ  (OP EQ  OQ EP)).2
kn (39)

as with pitch-class sets, for n-tone equal tempered pitch sets, the simplification 
of dpow in Equation 15 is only true for certain values of a, b, and f(z). Specifi-
cally, with a 5 0, b 5 kn/24 (k [ Z), and f(z) 5 1, we have

dpow(P,Q)    b P  Q .  (40)

alternatively, with a 5 0, b 5 kn/12, and a scaling factor of f(z) 5 1 – (z/b), 
we have

dpow(P,Q)    b
2 P  Q .  (41)

8.3 Simpson’s rule

One of the most elegant ways of estimating definite integrals (Equation 13) is 
the composite Simpson’s rule. Basically, we divide the interval of integration 
into many smaller parts and estimate the area of each part. Dividing the inter-
val [a, b] into n parts, Simpson’s rule states that

g(x)dx     g(x0)  2    g(x2j)  4   g(x2j  1)  g(xn) ,3
h

a

b


n/21

j 1

n/2

j 1

 (42)

where xk 5 a 1 kh for k 5 0, 1, . . . , n and h 5 (b – a)/n. By dividing the interval 
[a, b] into smaller parts and reducing the size of the “step length” h, we can 
decrease the discrepancy between the estimation and the definite integral. 
Substituting Equations 14 and 16 for g(x) gives approximations of dpow and dq 
between pitch sets.

Works Cited

amiot, Emmanuel. 2007. “David Lewin and Maximally Even Sets.” Journal of Mathematics and 
Music 1/3: 1–14.

Buchler, Michael. 1997. “relative Saturation of Subsets and Interval Cycles as a Means for 
Determining Set-Class Similarity.” Ph.D. diss., University of rochester.

———. 2000. “Broken and Unbroken Interval Cycles and Their Use in Determining  
Pitch-Class Set resemblance.” Perspectives of New Music 38/2: 52–87.

Bullough, r. K. 1961. “On Homometric Sets. I. Some General Theorems.” Acta Crystallograph-
ica 14: 257–68.

Callender, Clifton. 2004. “Continuous Transformations.” Music Theory Online 10/3.



331Clifton Callender  Continuous Harmonic Spaces

Callender, Clifton and rachel Hall. 2007. “Homometric Sets and Z-related Chords.” Paper 
presented at the american Mathematical Society National Conference, New Orleans.

Callender, Clifton, Ian Quinn, and Dmitri Tymoczko. 2008. “Generalized Voice-Leading 
Spaces.” Science 320: 346–48.

Carter, Elliott. 2002. Harmony Book, ed. Nicholas Hopkins and John F. Link. New York: 
Carl Fischer.

Castrén, Marcus. 1994. “rECrEL: a Similarity Measure for Set-Classes.” Ph.D. diss., 
Sibelius academy.

Cohn, richard. 1991. “Properties and Generability of Transpositionally Invariant Sets.” Journal 
of Music Theory 35: 1–32.

———. 1998. “Square Dances with Cubes.” Journal of Music Theory 42: 283–95.
Grisey, Gérard. 1987. “Tempus ex Machina: a Composer’s reflection on Musical Time.”  

Contemporary Music Review 2: 241–77.
Hall, rachel and Dmitri Tymoczko. 2007. “Poverty and Polyphony: a Connection 

between Music and Economics.” Preprint available at http://www.sju.edu/~rhall/ 
povertypolyphony.pdf.

Isaacson, Eric. 1990. “Similarity of Interval-Class Content between Pitch-Class Sets: The IcVSIM 
relation.” Journal of Music Theory 34: 1–28.

———. 1996. “Issues in the Study of Similarity in atonal Music.” Music Theory Online 2/7. 
http://societymusictheory.org/mto/issues/mto.96.2.7/mto.96.2.7.isaacson.html.

Lewin, David. 1959. “re: Intervallic relations between Two Collections of Notes.” Journal of 
Music Theory 3: 298–301.

———. 1982. “On Extended Z-Triples.” Theory and Practice 7: 38–39.
———. 1987. Generalized Musical Intervals and Transformations. New Haven: Yale University 

Press.
———. 1998. “Some Ideas about Voice Leading between Pcsets.” Journal of Music Theory 

42: 15–72.
———. 2001. “Special Cases of the Interval Function between Pitch-Class Sets X and Y.” Journal 

of Music Theory 45: 1–29.
Morris, robert. 1979. “a Similarity Index for Pitch-Class Sets.” Perspectives of New Music  

18/1: 445–60.
———. 1995. “Equivalence and Similarity in Pitch and Their Interaction with Pcset Theory.” 

Journal of Music Theory 39: 207–43.
Quinn, Ian. 2006. “General Equal Tempered Harmony (Introduction and Part I).” Perspectives 

of New Music 44/2: 114–58.
———. 2007. “General Equal-Tempered Harmony (Parts II and III).” Perspectives of New Music 

45/1: 4–63.
roeder, John. 1987. “a Geometric representation of Pitch-Class Series.” Perspectives of  

New Music 25/1–2: 362–409.
rogers, David. 1999. “a Geometric approach to Pcset Similarity.” Perspectives of New Music  

37/1: 77–90.
rose, Francois. 1996. “Introduction to the Pitch Organization of French Spectral Music.”  

Perspectives of New Music 34/2: 6–39.
rosenblat, Joseph. 1984. “Phase retrieval.” Communications in Mathematical Physics 39: 77–100.
rust, Douglas. 1995. “Conversation with Witold Lutosławski.” Musical Quarterly 79: 207–23.
Scott, Damon and Eric J. Isaacson. 1998. “The Interval angle: a Similarity Measure for  

Pitch-Class Sets.” Perspectives of New Music 36/2: 107–42.
Smith, Julius O., III. 2008. Mathematics of the Discrete Fourier Transform (DFT) with Audio Applica-

tions, 2nd ed. http://ccrma.stanford.edu/~jos/mdft/.
Soderberg, Stephen. 1995. “Z-related Sets as Dual Inversions.” Journal of Music Theory  

39: 77–100.



332 J O U r N a L  o f  M U S I C  T H E O r Y

Straus, Joseph. 2003. “Uniformity, Balance, and Smoothness in atonal Voice Leading.” Music 
Theory Spectrum 25: 305–52.

Stucky, Steven. 1981. Lutoslawski and His Music. Cambridge: Cambridge University Press.
———. 2005. “Voice Leading in Set-Class Space.” Journal of Music Theory 49: 45–108.
Teitelbaum, richard. 1965. “Intervallic relations in atonal Music.” Journal of Music Theory  

9: 72–127.
Tymoczko, Dmitri. 2006. “The Geometry of Musical Chords.” Science 313: 72–74.
———. 2008. “Voice Leading and the Fourier Transform.” Journal of Music Theory 52, in press.
Vuza, Dan Tudor. 1993. “Supplementary Sets and regular Complementary Unending Canons 

(Part Four).” Perspectives of New Music 31/1: 270–305.

Clifton Callender is associate professor of composition at Florida State University and Associate Editor 

of Perspectives of New Music. He recently published “Generalized Voice-Leading Spaces,” coauthored 

with Ian Quinn and Dmitri Tymoczko, in Science and completed a commission, Reasons to Learne to 

Sing, for the College Music Society’s 50th Anniversary. 




