

Weighing Diverse Theoretical Models on Turkish *Maqam* Music Against Pitch Measurements: A Comparison of Peaks Automatically Derived from Frequency Histograms with Proposed Scale Tones

Barış Bozkurt¹, Ozan Yarman², M. Kemal Karaosmanoğlu³, and Can Akkoç⁴

¹Izmir Institute of Technology, Turkey; ²Istanbul Technical University, Turkey; ³Yildiz Technical University, Turkey; ⁴Middle East Technical University, Ankara, Turkey

Reply by:

Marcel de Velde

January 8, 2013, Zwolle, The Netherlands

email: marcel@justintonation.com

Original paper can be found here: http://www.ozanyarman.com/files/theoryVSpractice.pdf

First of all I would like to thank the authors of the original paper for their excellent study. It presents the most useful pitch measurements of Turkish Maqam music I could find. However, I feel the most important tuning system has not been included in the comparison. The pure Pythagorean system.

I've therefore added the pitch data in cents of both a 12-tone and 24-tone Pythagorean scale to the comparison tables. The aditional data is presented in red, I've made no modification to the original data which is all in black.

I've chosen a 24 tones (24 tones linked by 23 pure 3:2 fifths) as the number of tones so there could be a fair comparison against the other 24 tone scales included in the original study. The Pythagorean system itself is of course not limited to 24 tones, but instead continues indefinitely.

My conclusion is that the 24-tone Pythagorean scale clearly gives a better match overall to the data of this study than the scales compared in the original paper.

Furthermore, I also find Pythagorean to make the most sense of all scales included. It is a pure just intonation system without tempering, the oldest known tuning system in the world and it has already formed the basis for western music for millennia, as well for for instance Chinese music and the Indian 22-tone Shruti (though this is also often interpreted as a 5-limit JI scale, this 5-limit interpretation differs only a maximum of 2 cents from a perfect Pythagorean chain of fifths).

It then makes sense to think the human brain uses a universal system to intepret musical pitch and that this system is based on the simple math of factoring the numbers 2 and 3 giving rise to the Pythagorean system.

Correspondence: Barış Bozkurt, Izmir Institute of Technology, Electrical and Electronics Engineering Dept., Gülbahçe, Urla, Izmir, Turkey. Email: barisbozkurt@iyte.edu.tr

Fig. 4. Histogram computed for maqam Rast comparing autopeaks with theorized scales.

Table 1. Data used in histogram for Figure 4 and quantitative comparison of theorized scales with measured relative pitches. $M_{\rm e}$, $D_{\rm e}$: maximum and average distance values computed with respect to AutoPeak-env. $M_{\rm a}$, $D_{\rm a}$: maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

Rast				Distanc	e to to	nic in H	olderiar	comma	S			M_{c}	$D_{\mathbf{c}}$	$M_{\mathbf{a}}$	$D_{\mathfrak{a}}$	E	C
YAEU	9.01		16.98	22	31			40.01			47.98	0.85	0.23	0.4	0.18	100	75
Mus2	9	16	17	22	26 31	36	39	40	44		48	0.93	0.2	0.41	0.17	68.2	85.8
TK	9		17	22	31			39	44		48	1.24	0.35	1.41	0.31	100	82.9
Yarman24	9.01	15.88	17.06	22	31			40.01	43.99	47.33	48.07	0.26	0.11	0.42	0.18	77.8	70.8
Yavuzoglu48	8.83		16.56	22.08	30	.92		39.75	44.17	47.48	48.58	0.49	0.27	0.66	0.31	87.5	85.4
Auto Peak-env.	9	16.	13	21.99	30	.88 36	.93	40.24	43.94		48.12						
AutoPeak-ave.	9.17		16.64	21.9	31	.02		40.41	43.91	48.	01						
Rast					D	stance t	o tonic	in cents						$M_{\mathfrak{C}}$	$D_{\mathfrak{C}}$	$M_{\rm a}$	D_{i}
YAEU	204		384.5	498.1		701.9			905.9			10	86.3	19.2	5.2	9.1	4.
Mus2	203.8	362.2	384.9	498.1	588.7	701.9	815.1	883.0	905.7	996.2		10	86.8	21.0	4.5	9.3	3.8
TK	203.8		384.9	498.1		701.9			883.0	996.2		10	86.8	28.1	7.9	31.9	7.0
Yarman24	204	359.5	386.3	498.1		701.9			905.9	996	1071.0	6 10	88.4	5.9	2.5	9.5	4.
Yavuzoglu48	200		375	500		700			900	1000	1075	11	00	11.0	6.1	14.9	7.0
AutoPeak-env.	203.8	365.2	497.9		699.2	836.2		911.1	994.9		1089.:	5					
AutoPeak-ave.	207.6		376.8	495.8		702.3			914.9	994.2	1	087.0					
Pyth12	203.9		384.4	498		702			905.9	996.1		1	086.	3			
Pyth24	203 0	360.9	384 4	498		702			905.9	996.1	1063	2.9 1	086	2			

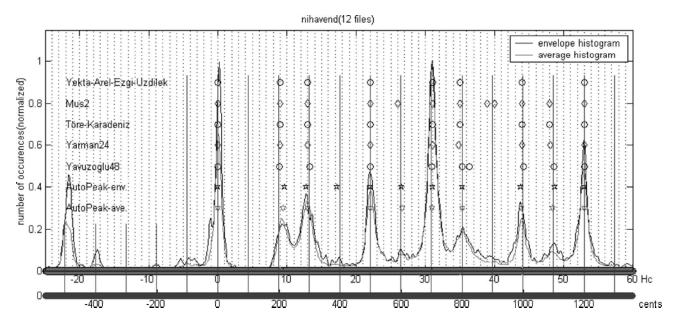


Fig. 5. Histogram computed for maqam Nihavend comparing autopeaks with theorized scales.

Table 2. Data used in histogram for Figure 5 and quantitative comparison of theorized scales with measured relative pitches. M_{\odot} $D_{\rm c}$: maximum and average distance values computed with respect to AutoPeak-env. $M_{\rm a}$, $D_{\rm a}$: maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

Nihavend				Distan	ce to to	nic in H	Iolderia	n <i>comm</i>	as				$M_{\mathfrak{C}}$	$D_{\mathbf{e}}$	$M_{\mathfrak{a}}$	$D_{\mathbf{a}}$	E	C
YAEU	9.01	12.99		22		31	34.99				43.99		0.57	0.24	0.37	0.16	100	75
Mus2	9	13		22	26	31	35		39	40	44	48	0.63	0.32	0.68	0.25	80	84.9
TK	9	13		22		31	35				44	48	0.63	0.3	0.38	0.19	100	82.9
Yarman24	9.01	12.9		22		31	34.82				43.99	48.07	0.58	0.3	0.49	0.19	100	70.8
Yavuzoglu48	8.83	13.25		22.08		30.92	35.33	36.44			44.17	48.58	0.75	0.25	0.55	0.2	87.5	85.4
AutoPeak-env.	9.58	12.74	17.26	22.08	26.48	31	35.35				43.8	48.63						
AutoPeak-ave.	9.38	12.9		22.07	26.68	30.95	35.31				43.94	48.36						
Nihavend					D	istance	to tonic	in cent	s						$M_{ m c}$	$D_{\mathbf{e}}$	$M_{\rm a}$	$D_{\mathbf{a}}$
YAEU	204	294.	1	498	.1	701.	.9 792.	.2				996			12.9	5.4	8.4	3.6
Mus2	203.8	3 294.	3	498	.1 588.	7 701	.9 792.	.5	88	3.0	905.7	996.2	108	6.8	14.3	7.2	15.4	5.7
TK	203.8	3 294.	3	498	.1	701.	.9 792.	.5				996.2	108	6.8	14.3	6.8	8.6	4.3
Yarman24	204	292.	1	498	.1	701.	.9 788.	4				996	108	8.4	13.1	6.8	11.1	4.3
Yavuzoglu48	200	300		500		700	800	825				1000	110	0	17.0	5.7	12.5	4.5
AutoPeak-env.	216.9	288.	5 390	.8 499	.9 599.	5 701	.9 800.	4				991.7	110	1.1				
AutoPeak-ave.	212.4	292.	1	499	.7 604.	1 700	.8 799.	.5				994.9	109	4.9				
Pyth12	203.9	9 294	.1	498		702	2 792	. 2				996.1	1086	5.3	or 11	09.8	*	
Pyth24	203.9		.1	498		702	792	. 2				996.1	1086	5.3	1109.	8 *		

 $[\]star$ the data seems equally likely to indicate a major seventh of 1109.8 cents here to me instead of a diminished octave of 1086.3 cents.

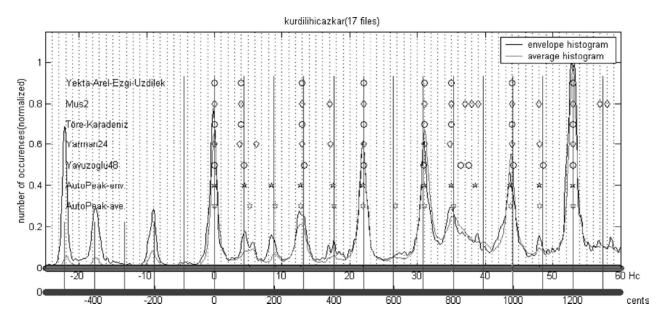


Fig. 6. Histogram computed for maqams Kürdilihicazkar comparing autopeaks with theorized scales.

Table 3. Data used in histogram for Figure 6 and quantitative comparison of theorized scales with measured relative pitches. $M_{\rm e}$, $D_{\rm e}$: maximum and average distance values computed with respect to AutoPeak-env. $M_{\rm a}$, $D_{\rm a}$: maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

K.Hicazkar				Distan	ce to to	onic in Ho	olderian con	mmas					M_{e}	$D_{\rm e}$	$M_{: \mathbf{I}}$	$D_{:\mathbf{I}}$	E	C
YAEU	3.99	12.	.99	2	22	3	1 34.99				43.99		0.53	0.2	1.27	0.39	100	75
Mus2	4	13	17	2	22	3	1 35	37	38	39	44	48	0.58	0.25	1.26	0.38	77.3	84.0
TK	4	13		2	22	3	35				44		0.52	0.2	1.26	0.39	100	85.4
Yarman24	3.73 6.29	12.	9 17	.06	22	3	34.82				43.99	48.07	2.19	0.47	1.03	0.35	94.4	64.6
Yavuzoglu48	4.42	13.	25	22	.08	30	.92 36.44		37.54		44.17	48.58	1.46	0.54	1.09	0.54	93.7	84.4
AutoPeak-env.	4.52 8.48	12.	76 17	.58 21	.93	31	.02 34.98		38.5	5	43.67	48.06						
AutoPeak-ave	5.26	9 12.	71 17	.64 21	.9 20	6.74 31	.1 35.35				43.77	48.05						
K.Hicazkar					D	istance to	tonic in c	ents							M_{\bullet}	D_{c}	M_{i1}	D_{i}
YAEU	90.3		294.1		498.1		701.9	792.2	!			996			12	4.5	28.8	8.8
Mus2	90.6		294.3	384.9	498.1		701.9	792.5	837.7	86	0.4 883	996.2	108	6.8	13.1	5.7	28.5	8.6
TK	90.6		294.3		498.1		701.9	792.5				996.2			11.8	4.5	28.5	8.8
Yarman24	84.5 142.4		292.1	386.3	498.1		701.9	788.4				996	108	8.4	49.6	10.6	23.3	7.9
Yavuzoglu48	100		300		500		700	825		85	0	1000	110	0 :	33.1	12.2	24.7	12.2
AutoPeak-env.	102.3	192	288.9	398.0	496.5		702.3	792			872.8	988.8	108	8.2				
AutoPeak-ave	119.1	203.8	287.8	399.4	495.8	605.434	704.1509	800.4				991	108	7.9				
Pyth12	90.2		294.1	384.4	498		702	792	. 2			996.1	L 10	86.3				
Pyth24	113.7 137.			407.8			702	792				996.1						

^{*} here I've used Pyth24 in an alternative way which seems to give a higher match to the data, while also making the comma distinction in the first tone. only the last tone (which shows only a very weak peak in the data) has to be interpreted a comma higher at 1109.9 cents, otherwise the 137.1 cents tone would not fit the same 24 tone Pythagorean subscale.

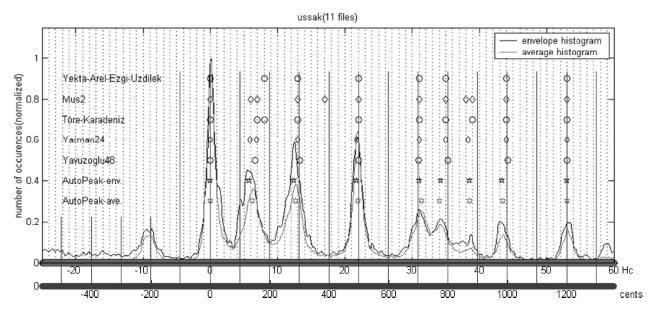


Fig. 7. Histogram computed for maqam Uşşak comparing autopeaks with theorized scales.

Table 4. Data used in histogram for Figure 7 and quantitative comparison of theorized scales with measured relative pitches. M_{\odot} $D_{\rm c}$: maximum and average distance values computed with respect to AutoPeak-env. $M_{\rm a}$, $D_{\rm a}$: maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

Uşşak			Dist	ance	to tonic	in Holde	erian <i>con</i>	nmas			Λ	$I_{\mathbf{c}}$ D	e N	$I_{\rm a}$	$D_{\mathfrak{a}}$	E	C
YAEU		7.97	12.99		22	31	34.99			43.9	9 2.	24 0.7	74 1.	69	0.68	100	75
Mus2	6	7	13	17	22	31	35	38	39	44	0.	74 0.4	13 1.	01	0.45	70	86.8
TK	7	8	13		22	31	35		39	44	1.	27 0.5	57 1.	01	0.52	87.5	82.9
Yarman24	5.84	6.87	12.99		21.74	31	34.99	38.33		43.9	9 0.	73 0.3	34 1		0.44	87.5	70.8
Yavuzoglu48	6.63		13.25		22.08	30.92	35.33			44.1	7 1.	07 0.6	is 1.	35	0.61	100	87.5
AutoPeak-env.	5.	73	12.41		21.78	31.04	34.26	38.52		43.3	4						
AutoPeak-ave.	6.	28	12.62		21.89	31.36	33.99	38.53		43.4	3						
Uşşak					Dist	ance to	tonic in	cents					Λ	1 _c	$D_{\mathbf{e}}$	$M_{\mathfrak{a}}$	$D_{\mathfrak{a}}$
YAEU		180	0.5 29	94.1		498.1	701.9	792.2				996	50	.7	16.8	38.3	15.4
Mus2	135.8	158	3.5 29	4.3	384.9	498.1	701.9	792.5	86	0.4	883	996.2	2 16	.8	9.7	22.9	10.2
TK	158.5	181	.1 29	4.3		498.1	701.9	792.5			883	996.2	2 28	.8	12.9	22.9	11.8
Yarman24	132.2	155	.5 29	94.1		492.2	701.9	792.2	86	7.8		996	16	.5	7.7	22.6	10
Yavuzoglu48	150		30	00		500	700	799.9				1000	24	.2	15.4	30.6	13.8
AutoPeak-env.		129.7	28	31		493.1	702.8	775.7		872.	2	981.2	2				
AutoPeak-ave.		142.2	28	35.7		495.6	710.0	769.6		872.	4	983.3	3				
Pyth12	113.	7	29	4.1		498	702	792.2				996.1					
Pyth24	156.	9	29	4.1		498	702	768.7		859 8	82.4	972.6					
Pyth24	137.	1	29	4.1		498	702	792.2		839.1		996.1	*				

^{*} I've given 2 Pyth24 interpretations here as the first interval seems to match 137.1 best, but for the other intervals the first interpretation with 156.9 cents first interval seems to match best overall.

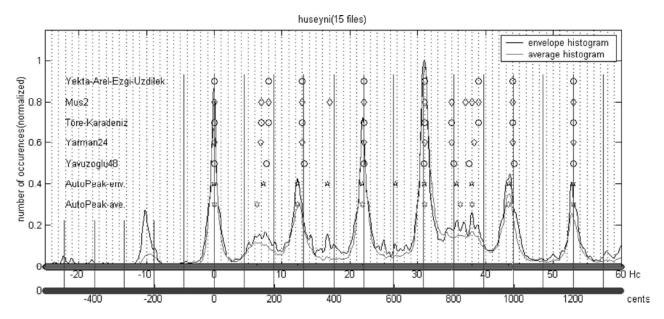


Fig. 8. Histogram computed for maqam Hüseyni comparing autopeaks with theorized scales.

Table 5. Data used in histogram for Figure 8 and quantitative comparison of theorized scales with measured relative pitches. M_e , D_c : maximum and average distance values computed with respect to AutoPeak-env. M_a , D_a : maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

Hüseyni				Ι	Distance	to toni	c in H	olderi	an <i>co</i>	mma	S			$M_{\mathbf{c}}$	$D_{\mathbf{c}}$	$M_{\rm a}$	$D_{\mathbf{a}}$	E	C
YAEU	7.97		12.99)	22		31					38.97	43.99	0.96	0.52	1.6	0.68	100	75
Mus2	7	8	13	17	22		31	3	5	37	38	39	44	0.71	0.34	0.66	0.41	68.2	85.8
TK	7	8	13		22		31	3	4.99		38.33	39	44	0.99	0.5	1.34	0.65	87.5	82.9
Yarman24	6.87		12.99)	22		31	3	5.33		37.54		43.99	0.73	0.42	1.35	0.53	100	70.8
Yavuzoglu48	7.73		13.25	5	22.0	8	30.	.92 3	5.71		38.01	43.38	44.17	0.92	0.48	1.36	0.7	100	85.4
AutoPeak-env.	7.28		12.33	16.7	4 21.8	1 26.7	6 30.	.98	36.3	34	37.98	43.36							
AutoPeak-ave.	6.37		12.35	5	21.8	1	31.	.05											
Hüseyni						Dista	ince to	tonic	in ce	ents						M_{c}	$D_{\mathbf{c}}$	$M_{\rm a}$	$D_{\mathbf{a}}$
YAEU	180.5			294.1		498.1		701.	.9				882.3	996	5 2	1.7	11.8	36.2	15.4
Mus2	158.5	18	1.1	294.3	384.9	498.1		701.	.9 79	92.5	837.7	860.4	883	996	.2 1	6.1	7.7	14.9	9.3
TK	158.5	18	1.1	294.3		498.1		701.	.9 79	92.5			883	996	.2 2	2.4	11.3	30.3	14.7
Yarman24	155.5			294.1		498.1		701.	.9 79	92.2		867.8		996	2	2.4	9.5	30.6	12
Yavuzoglu48	175			300		500		700	80	00		850		1000	1	6.5	10.9	30.8	15.8
AutoPeak-env.	164.8			279.2	379	493.8	605.9	701.	.4 80	08.5		860.6	982.2		2	0.8			
AutoPeak-ave.	144.2			279.6		493.8		703.	.0	82	2.8	859.9	981.7						
Pyth12	180.	5		294.1	384.4	498		702	79	92.2		882.4		996	.1				
Pyth24	157			270.7	384.4	498		702	79	92.2		858.9	972.6	996	. 1				

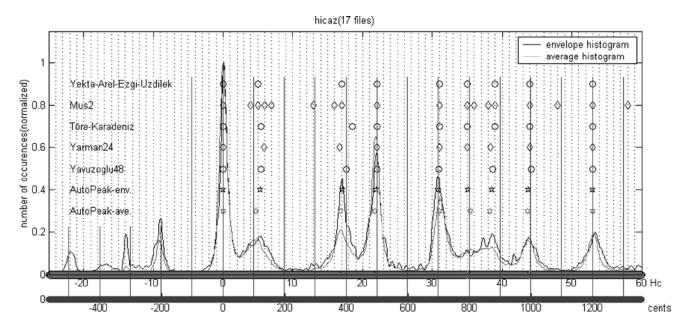


Fig. 9. Histogram computed for maqam Hicaz comparing autopeaks with theorized scales.

Table 6. Data used in histogram for Figure 9 and quantitative comparison of theorized scales with measured relative pitches. M_{\odot} $D_{\rm e}$: maximum and average distance values computed with respect to AutoPeak-env. M_{\odot} , D_{\odot} : maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

4	5.02							1110 111 11	Olucita	n comm	rius				M_{c}	D_{\bullet}	W iI	νil	E	С
4						16.98	22	31	34.99			38.97	43.99	1	0.4	0.18	0.74	0.32	100	70.8
_	5	6	7	13	16	17	22	31	35	36	38	39	44	48	0.43	0.19	0.38	0.25	46.7	86.8
	5.5					18.5	22	31	35			39	44		1.46	0.38	1.69	0.61	100	82.9
	5.84					16.79	22	31	34.99		38.33		43.99		0.54	0.23	1.19	0.33	100	70.8
	5.52					17.67	22.08	30.92				38.65	44.17		0.62	0.26	0.87	0.51	100	87.5
	5.3					17.04	21.92	30.84	35.05		38	.57	43.75							
	4.65					16.81	21.79	31.09	35.38		38	.23	43.7							
								Distanc	e to to	nic in c	ents						M_{ϵ}	D_{ϵ}	$M_{:\mathbf{I}}$	$D_{:}$
	113.	.7						384.9	498.1	701.9	792.2			882.3	996		9.1	4.1	16.8	7.2
0.0	→ 113.	.2	135	8	158.5	294.3	362.3	384.9	498.1	701.9	792.5	815.1	860.4	883	996.2	1086.9	9.7	4.3	8.6	5.7
	124.	.5						418.9	498.1	701.9	792.5			883	996.2		33.1	8.6	38.3	13.8
	132.	.2						380.2	498.1	701.9	792.2		867.8		996		12.2	5.2	26.9	7.5
	125							400	500	700				875	1000		14	5.9	19.7	11.5
	120							385.8	496.3	698.3	793.6		873	.3	990.6					
	105.	.3						380.6	493.4	703.9	801.1		865	.6	989.4					
	9.0	2						384 4	498	702	792	2	Ω	82 4	996 1					
-		5.84 5.52 5.3 4.65 113 124 132 125 120 105.	5.84 5.52 5.3 4.65 113.7 9.6 113.2 124.5 132.2 125	5.84 5.52 5.3 4.65 113.7 9.6 113.2 124.5 132.2 125 120 105.3 90.2 113.7	5.84 5.52 5.3 4.65 113.7 9.6 113.2 124.5 132.2 125 120 105.3 90.2 113.7	5.84 5.52 5.3 4.65 113.7 13.2 135.8 158.5 124.5 132.2 125 120 105.3	5.84 16.79 5.52 17.67 5.3 17.04 4.65 16.81 113.7 135.8 158.5 294.3 124.5 132.2 125 120 105.3	5.84 16.79 22 5.52 17.67 22.08 5.3 17.04 21.92 4.65 16.81 21.79 113.7 13.2 135.8 158.5 294.3 362.3 124.5 132.2 125 120 105.3	5.84 16.79 22 31 5.52 17.67 22.08 30.92 5.3 17.04 21.92 30.84 4.65 16.81 21.79 31.09 Distance 113.7 384.9 124.5 132.2 380.2 125 400 120 385.8 105.3 380.6	5.84 16.79 22 31 34.99 5.52 17.67 22.08 30.92 5.3 17.04 21.92 30.84 35.05 4.65 16.81 21.79 31.09 35.38 Distance to to: 113.7 384.9 498.1 124.5 132.2 380.2 498.1 125 400 500 120 385.8 496.3 105.3 380.6 493.4 90.2 384.4 498 113.7 384.4 498	5.84 16.79 22 31 34.99 5.52 17.67 22.08 30.92 5.3 17.04 21.92 30.84 35.05 4.65 16.81 21.79 31.09 35.38 Distance to tonic in c 113.7 384.9 498.1 701.9 124.5 418.9 498.1 701.9 122.5 400 500 700 120 385.8 496.3 698.3 105.3 380.6 493.4 703.9	5.84 16.79 22 31 34.99 38.33 5.52 17.67 22.08 30.92 5.3 17.04 21.92 30.84 35.05 38 4.65 16.81 21.79 31.09 35.38 38 Distance to tonic in cents 113.7 384.9 498.1 701.9 792.2 384.9 498.1 701.9 792.5 418.9 498.1 701.9 792.5 418.9 498.1 701.9 792.5 380.2 498.1 701.9 792.2 400 500 700 385.8 496.3 698.3 793.6 105.3 380.6 493.4 703.9 801.1	5.84	5.84	5.84	5.84	5.84	5.84	5.84	5.84

^{*} The data seems to indicate the possibility to interpret 113.7 a comma lower and 882.4 a comma lower as provided in the second Pyth24 scale.

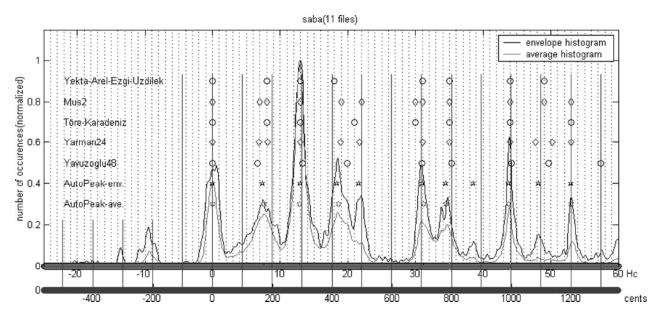


Fig. 10. Histogram computed for maqam Saba comparing autopeaks with theorized scales.

Table 7. Data used in histogram for Figure 10 and quantitative comparison of theorized scales with measured relative pitches. $M_{\rm e}$, $D_{\rm e}$: maximum and average distance values computed with respect to AutoPeak-env. $M_{\rm a}$, $D_{\rm a}$: maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

I	1				,			,		,	,	1	-					
Saba				Dist	ance	e to ton	ic in Ho	lderian	comma	S			M_{e}	$D_{\mathbf{c}}$	$M_{\mathfrak{a}}$	D_{a}	E	C
YAEU	7.97		12.99	18.0	1		31	34.99		43.99		49.02	0.88	0.37	0.69	0.33	92.8	72.9
Mus2	7	8	13	19	22	2 30	31	35		44		49	0.86	0.37	0.46	0.28	70	86.8
TK	8		13		21	1	30	35		44			0.97	0.49	2.3	0.78	100	85.4
Yarman24	6.87	8.06	12.99	18.88	8 21	1.74	31	34.99		43.99	47.72	50.28	0.52	0.27	0.45	0.26	70	70.8
Yavuzoglu48	6.63		13.25	19.8	8		30.92	35.33		44.17		49.69	1.55	0.76	1.18	0.67	92.8	86.5
AutoPeak-env.	7.39		12.89	18.4	2 2	1.67	30.97	34.53	38.49	43.85	48	.14						
AutoPeak-ave.	7.	.61	12.79		18.7		31.14	34.54		43.81								
Saba						Di	stance to	o tonic	in cents						$M_{\rm c}$	$D_{\mathbf{e}}$	$M_{\mathfrak{a}}$	$D_{\rm a}$
YAEU	180.	5	294	4.1 4	07.8			701.9	792.2		996			1109.9	19.9	8.4	15.6	7.5
Mus2	158.	5 181	.1 294	4.3 4	30.2	498.1	679.2	701.9	792.5		996.	2		1109.4	19.5	8.4	10.4	6.3
TK	181.	1	294	4.3		475.5		679.2	792.5		996.	2			22	11.1	52.1	17.7
Yarman24	155.	5 182	2.5 294	4.1 4	27.5	492.2		701.9	792.2		996	108	0.5	1138.4	11.8	6.1	10.2	5.9
Yavuzoglu48	150		300) 4	50			700	800		1000			1125	35.1	17.2	26.7	15.2
AutoPeak-env.	167.	3	29	1.8 4	17.1	490.6		701.2	781.8	871.5	992.	8	109	0				
AutoPeak-ave.	1	172.3	289	9.6	42	23.4		705.1	782.0		991.	9						
Pyth12	203.	. 9	29	4.1 4	07.8	8 498		702	792.2	2	996.	1 110	9.8					
Pyth24	180.	. 5	29	4.1 4	07.8	8 498		702	792.2	882.	4 996.	1 108	6.3					

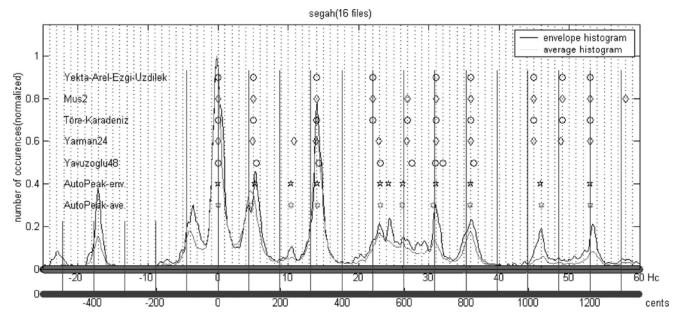


Fig. 11. Histogram computed for maqam Segah comparing autopeaks with theorized scales.

Table 8. Data used in histogram for Figure 11 and quantitative comparison of theorized scales with measured relative pitches. $M_{\rm e}$, $D_{\rm e}$: maximum and average distance values computed with respect to AutoPeak-env. $M_{\rm a}$, $D_{\rm a}$: maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

Segah				Dist	ance to 1	onic in	Holderi	an <i>comn</i>	as			$M_{\mathbf{e}}$	$D_{\mathbf{c}}$	$M_{\rm a}$	$D_{\mathbf{a}}$	E	C
YAEU	5.02		14.03	22			31		36.0	02 45.0	3 49.02	1.08	0.4	1.11	0.49	85.7	75
Mus2	5		14	22		27	31		36	45	49	1.08	0.45	1.11	0.53	87.5	86.8
TK	5		14	22		27	31		36	45	49	1.08	0.45	1.11	0.53	87.5	82.9
Yarman24	4.93	10.82	13.94	22	.95	26.93	31		35.9	94 44.9	4 48.84	0.96	0.34	1.06	0.4	88.9	66.7
Yavuzoglu48	5.52		14.35	23	.19	27.6	30.92	32.02	36.4	14		1.29	0.42	1.34	0.55	85.7	87.5
AutoPeak-env.	5.23	10.33	14.15	23	.08 24.28	26.31	31.03		35.9	95 45.9							
AutoPeak-ave.	4.68	10.32	14.08	23	.11	26.27	30.69)	35.8	37 46.0	1						
Segah					Γ	Distance	to tonio	in cents	;				Λ	I_{c}	$D_{\mathfrak{C}}$	$M_{\rm a}$	$D_{\mathfrak{a}}$
YAEU	113.7	,	31	7.7	498.1			701.9		815.5	1019.5	1109.9	24	4.5	9.1	25.1	11.1
Mus2	113.2		31	7	498.1		611.3	701.9		815.1	1018.9	1109. /	1 24	4.5	10.2	25.1	12
TK	113.2		31	7	498.1		611.3	701.9		815.1	1018.9	1109. /	1 24	4.5	10.2	25.1	12
Yarman24	111.6	245	31	5.6	519.6		609.7	701.9		813.7	1017.5	1105.8	2	1.7	7.7	24	9.1
Yavuzoglu48	125		32	.5	525		625	700	725	825			29	9.2	9.5	30.3	12.5
AutoPeak-env.	118.4	233	.9 32	0.4	522.6	549.7	595.7	702.6		814	1039.2						
AutoPeak-ave.	106	233	.7 31	8.8	523.2		594.8	694.9		812.2	1041.7						
Pyth12	113.	7	3	17.6	498		611.7	702		815.6	1019.6						
Pyth24	113.				521.5	545	611.7	702		815.6	1043						

Unlike all the other scales presented here, Pyth24 seems to match the data very closely.

Fig. 12. Histogram computed for maqam Hüzzam comparing autopeaks with theorized scales.

Table 9. Data used in histogram for Figure 12 and quantitative comparison of theorized scales with measured relative pitches. M_{c} , D_{c} : maximum and average distance values computed with respect to AutoPeak-env. M_{a} , D_{a} : maximum and average distance values computed with respect to AutoPeak-ave. E, C: mean efficiency and mean complexity in percentage.

Hüzzam			Dis	tance to	tonic in	Holder	ian <i>con</i>	ımas			$M_{\mathbf{e}}$	$D_{\mathfrak{e}}$	$M_{\rm a}$	$D_{\mathfrak{a}}$	E	C
YAEU	5.02	14.03	19.05			31	36.02		49.02		1.42	0.3	1.4	0.28	100	75
Mus2	5	14	20	21 27	30	31	36	45	49		0.75	0.29	0.66	0.2	75	85.8
TK	5	14	19.5			31	36	45	49		0.97	0.3	0.95	0.27	100	82.9
Yarman24	4.93	13.94	20.59	26.	93	31	35.94	44.94	48.84	51.81	0.82	0.3	0.71	0.2	88.9	66.7
Yavuzoglu48	5.52	14.35	20.98			32.02	36.44				1.11	0.54	1.05	0.54	100	89.6
AutoPeak-env.	5.11	14.12	20.47	27.	75	30.91	35.98	45.74	48.95	51.46						
AutoPeak-ave.	4.99	14.17	20.45			30.97	36.03	45.66	48.98							
Hüzzam					Distan	ice to to	onic in c	ents					M_{c}	$D_{\mathbf{e}}$	$M_{\mathfrak{a}}$	D_{a}
YAEU	113.7	317.7	431.3				701.9	815.5		110	9.9		32.2	6.8	31.7	6.3
Mus2	113.2	317	452.8	475.5	611.3	679.2	701.9	815.1	1018.9	9 110	9.4		17	6.6	14.9	4.5
TK	113.2	317	441.5				701.9	815.1	1018.9	9 110	9.4		22	6.8	21.5	6.1
Yarman24	111.6	315.6	466.2		609.7		701.9	813.7	1017.:	5 110	5.8	1173.1	18.6	6.8	16.1	4.5
Yavuzoglu48	125	325	475				725	825					25.1	12.2	23.8	12.2
AutoPeak-env.	115.7	319.7	463.5		628.3		699.8	814.6	1035.	6 110	8.3	1165.1				
AutoPeak-ave.	113	320.8	463.0				701.2	815.8	1033.	8 110	19					
Derth 10	112	7 217	6 100		611 7	,	702	015 /	- 1010	<i>c</i> 11	00 0					
Pyth12		7 317.			611.7		702	815.6		.6 11		1186 5				
Pyth24	113.	7 317.	6 474.	6	611.7	'	702	815.6	b 1019	.6 11	09.8	1176.5				