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Introduction. Recent studies in the theory of scales by Eytan
Agmon (1989), Gerald Balzano (1980), Norman Carey with
David Clampitt (1989), John Clough with Jack Douthett
(1991), Clough with Gerald Myerson (1985, 1986), and
Carlton Gamer (1967), which may appear diverse, have in
common the central role of a generator—an interval whose rep-
etition ties together all the pitch-classes (pcs) in a set or seg-
ment. The set or segment thus formed is commonly known as
an interval cycle, either complete in the sense that additional
repetitions of the interval yield redundant pcs, or incomplete in
the sense that they do not. Drawing largely on properties
defined in these studies, we propose a taxonomy for the special
categories of pitch-class sets (pcsets) that correspond, collec-
tively, to the interval cycles (complete and incomplete) or to
certain conjunctions thereof. The taxonomy is, we believe,
interesting in itself, as it addresses complex interactions among
features that theorists have defined for different purposes. We
believe as well that it strengthens interrelationships among the
three concepts in this essay’s title: ideas from the theory of
scales are cast across pitch-class space, and as a result we dis-
cover anew the place of the interval cycle as a pervasive and
unifying theoretical notion.

In addition to the common thread of the interval cycle, the
cited studies also share a common motivating factor: the desire
to explore spaces defined by features of the usual diatonic
scale. If we regard a particular property of the diatonic scale as
interesting, it is natural to search for other scales with that prop-

erty, as a means of gaining insight into it. The special status of
the generator (or interval cycle) as a feature of many classes of
scales will become clear as our study unfolds.

We presume familiarity with 12-pc space, and we hope that
our classification will be seen as meaningful for the music of
that familiar space. However, our results are intended to apply
quite generally to microtonal systems and to all contexts where
ordinal distances operate as, for example, in cycles of generic
intervals—3ds, 4ths, etc.—within scales.

This raises the question of scale versus set. How shall we
distinguish between the two? Fortunately, the question is not
critical for our purposes here, so it need detain us only briefly.
Indeed the question arises only because the literature that we
draw upon purports to deal with both scales and sets. It will suf-
fice to say that wherever the concept of a generic interval (2d,
3d, etc.) applies, there lurks a scale-like structure, if not a liv-
ing scale. It is clear that generic intervals carry musical mean-
ing for the scales of tonal music; it is not clear that they do so
for Schoenberg’s hexachords. These issues deserve study, but
we finesse them in the present paper, making no formal dis-
tinction between the terms scale and set (both refer to
unordered sets of pcs) and choosing one term or the other as
seems suitable to the context of the discussion.

Our program is as follows: We first define eight features
pertaining to scales, all but one of which has been previously
defined in the literature. After observing and verifying logical
relationships among the features, we identify thirteen sets of



features which serve to partition pcsets that have at least one of
the features. These thirteen feature-sets (F-sets) support the
proposed taxonomy, which amounts to a mapping of pcsets
onto the F-sets. The range of individual features over the F-sets
then comes into view, followed by proofs of non-existence for
pcsets corresponding to sets of features not captured by the
thirteen F-sets, and algorithmic approaches to the exhaustive
generation of pcsets corresponding to each F-set capable of
supporting examples. We close with remarks on the comple-
ment relation and additional comments on two particular cate-
gories of sets.

1. FEATURES

Example 1 lists the scale features recognized in the present
study, with brief definitions and one or two examples of pcsets
that exhibit each feature. (Formal notations in Example 1 are
explained below.) In some cases we have substituted defini-
tions equivalent to those in the cited sources, to suit our objec-
tives. Pcsets are enclosed in curly brackets; a following sub-
script indicates the size of the modular chromatic universe if
other than 12. To simplify the exposition, and with no loss of
precision, we dispense for the most part with the concept of set-
class and deal only with literal sets: it is clear that if a pcset has
any of the defined features, then all members of the corre-
sponding set-class (under the usual canon of transposition and
inversion) have the same features.

There are two additional matters of preamble to the defini-
tions. First, it is necessary to distinguish between rational and
irrational generators. Since we deal only with pc space, there is
always an underlying modular universe. For convenience, we
will speak as though the interval of modularity is the usual 2:1
octave, but the actual size of this interval plays no role in the
definitions; nor does it enter into the taxonomy. What is signif-
icant here is not the size of the modular interval, but whether
the generating interval is a rational part of that modular inter-
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val. With respect to the modular 2:1 octave, well-known exam-
ples of rational and irrational generators are, respectively, the
equal tempered Sth and the pure 3:2 5th.! As noted below, some
of the features apply only to cases where the generator is ratio-
nal; others apply to both rational and irrational cases. To sim-
plify the exposition, we construct examples only for rational
cases, and we imagine these cases to be lodged in equal-
tempered systems. The extent to which particular non-equal-
tempered tunings are appropriately modeled, in some of their
aspects, by equal temperaments, involves a host of interesting
questions that we exclude from consideration here.

This leads directly to the second matter of preamble: the dis-
tinction between embedded and non-embedded scales. If, as a
convenience, we imagine sets with rational generators to be
lodged within equal-tempered tunings (as, for example, the
usual diatonic in 12-pc space), we are not, as a consequence,
obliged to recognize the larger scale steps (whole steps) as
divided by (chromatic) pcs that are actually “there” in any rel-
evant musical sense; that is quite a separate issue. The reverse
applies to cases with irrational generators. Our conceptions of
the Pythagorean heptatonic scale need not be limited to that of
a “free-standing” scale. As Carey and Clampitt (1989) have
explained, we are free to imagine it embedded within a 12-note
Pythagorean system, and that within a still larger Pythagorean
system, and so forth. So, like the matter of scale versus set, the
matter of embedded versus non-embedded sets or scales lies
outside the distinctions of our taxonomy.

With-these preliminary notions in place, let us take a brief
tour of the definitions of Example 1. Generated sets (G-sets)
are quite simply those sets associated with interval cycles. We
use Marc Wooldridge’s (1992) notation for such sets, where

'The frequency ratio of the equal-tempered 5th is irrational; however it is
a rational part of an octave: 7/12. On the other hand, the frequency ratio of the
pure 5th is rational, while it is an irrational part of an octave since log, 3/2 is
irrational.
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Example 1. Features of scales/sets
Features defined for rational or irrational generators

Myhill property

two specific sizes.

Feature Defining characteristic Example(s)
G Generated by a single interval. G(12,7,5) ={0, 5, 10, 3, 8, 1, 6}
generated ={0, 1, 3,5, 6, 8, 10}
(the usual diatonic)
G(7,3,4) = {0,4, 1}, = {0, 1, 4},
(a stack of Sths in 7-space)
WF G-set where each generating interval spans G(12,5,7)={0,7,2,9,4}
well-formed a constant number of scale steps. ={0,2,4,7,9}
(the usual pentatonic)
MP Each generic interval (2d, 3d, etc.) comes in G(8,5,3) = {0, 1, 3,4, 6},

<1> = (1,2}, <2> = (3, 4)

DE
distributionally even

Each generic interval comes in either one or
two specific sizes.

0,1, 6,7}
<1> ={1, 5}, <2> = {6}

Features defined for rational generators only

Feature

Defining characteristic

Example(s)

ME
maximally even

Each generic interval comes in either one integer
size or two consecutive integer sizes.

{0,1,3,4,6,7,9, 10}
<1> = (1,2}, <2> = {3},
<3> = {4, 5}, <4> = {6]}.
(the usual octatonic)

{0, 2, 4},
<1> = {2,3}
(the triad in 7-space)

DP Every interval class has unique multiplicity. G(12,6,5) = {0,2,4,5,7,9}
deep [143250]
G(11,5,4) = {0, 1,4,5, 8},
[20341]
DT ME-set with ¢ = 2(d — 1) and G(12,7,5) = {0, 1, 3,5, 6, 8, 10}
diatonic ¢ =0, mod 4. (the usual diatonic)
G(16,9,9) = {0,2,4,6,7,9, 11, 13, 15} ¢
(the next larger diatonic)
BZ ME-set withc = k(k + 1)andd = g = 2k +1,k = 3. {0,1,3,5,6, 8, 10}
Balzano (k = 3; the usual diatonic)

{0,3,5,7,9,12,14, 16, 18},
k=4




G(c, d, g) denotes a set of d pcs generated by interval g in a
chromatic universe of c¢ pcs. For convenience, we assume
throughout that pc 0 is the “origin.” Thus G(c, d, g) = {0, g, 2g,
..., (d — 1)g}, where products are reduced mod c.

Well-formed (WF) scales/sets were defined by Carey and
Clampitt (1989). In the example given, the constant number of
pes (four, inclusively) spanned by each generating interval of 7,
as well as by the residual “return-to-origin” interval of 8 is evi-
dent in the scale segments <0, 2, 4, 7>; <2,4,7,9>; <4, 7,
9,0>;<7,9,0,2>; <9,0, 2, 4>. WF-sets are, with the excep-
tion of total-chromatic sets (equal-tempered scales) precisely
those defined earlier, in different terms, by Erv Wilson (1975).

The next three definitions are stated in terms of what Clough
and Myerson (1986) call the spectrum of a generic interval—
the set of specific sizes that correspond to the interval. For
example, <1> = {1, 2} indicates that step intervals come in
sizes 1 and 2. Thus, the spectrums of the first three generic
intervals in the usual diatonic (the usual 2ds, 3ds, and 4ths) are
<1> = {1,2}, <2> = {3, 4}, <3> = {5, 6} (the spectrums
of the complementary intervals are implied: <4> = {6, 7}
etc.). Myhill-property (MP) sets were defined by Clough and
Myerson (1986). Distributionally even (DE) sets are isolated,
we believe for the first time, in the present paper. Maximally
even (ME) sets were defined by Clough and Douthett (1991).

Deep (DP) scales/sets were studied by Gamer (1967), who
attributes the term and its definition to Winograd (n.d.).

Diatonic (DT) scales/sets, in the present sense, were first
isolated by Agmon (1989). A definition of hyperdiatonic, pro-
posed by Clough and Douthett (1991), and equivalent to
Agmon’s definition of diatonic, is used here as it comports
more naturally with the other definitions of Example 1. A
detailed study of the relationship between the two definitions
may be found in Agmon (1996). )

Finally, the definition of Balzano (BZ) sets (Balzano 1980)
rests upon an interval k and the next larger interval k + 1,
whose sum is equal to the size of the generator and whose prod-
uct is equal to the size of the chromatic universe.
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To be sure, a great many additional features of scales and
sets have been defined in the literature. Those selected have
arisen in the course of studies based on the remarkable set of
features possessed by the usual diatonic. But they are by no
means the only features to have arisen in this way. Indeed, a
number of others deserve mention. Although we exclude them
from our system of classification in order to make the problem
tractable, some or all of these additional features might well be
included in extensions of the present system, or in classifica-
tions designed for other purposes.

We will mention four such features. To begin with, there is
inversional symmetry. All of the features defined above imply
inversional symmetry; so it is everywhere in the classifica-
tion—a constant property of the scales we study here which
therefore plays no role in distinctions among them. The same
applies to a second feature, transpositional combination, as
developed by Richard Cohn (1991).

Thirdly, there is prime cardinality. It is easy to see and, we
believe, well-known that because the cardinality of the usual
diatonic is prime, exhaustive cycles of pcs may be formed by
any generic interval; hence circles of thirds as well as circles of
fifths, and so on. As one of us has discussed elsewhere (Clough
1994), prime cardinality confers also, via the mathematics of
primitive roots, the possibility of linking cycles of all generic
intervals hierarchically by means of consistent patterns of
accent.

Finally, there is that which we shall call Cohn’s property, in
recognition of his (1996) work describing the class of pcsets
associated with what he terms maximally smooth cycles, a class
studied more formally in Lewin (1996). We return to this prop-
erty later.

2. IMPLICATIVE RELATIONSHIPS AMONG THE FEATURES

Having defined the several features that we shall be con-
cerned with, we now look at how they combine. As illustrated
in Example 2, a number of implicative relationships are present
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among the features listed in Example 1. For instance, all dia-
tonic sets have Myhill property, as symbolized by the arrow
from property DT to property MP in Example 2. Further, by
following all paths from property DT consistent with the
arrows in Example 2, we see that diatonic sets necessarily have
all the other properties except Balzano’s property. (In fact, the
diatonic set in 12-pc space is the only diatonic set that does
have BZ and hence all eight features, as we will show.) If a set
has any of the listed properties, except ME or DE, it also has G
(with the exception of an anomalous class of small-cardinality
DP sets). And so forth. Note that the implications shown are all
one-way; which is to say that no two features are logically
equivalent. The broken arrow from DE to G symbolizes a
somewhat different relationship that we will discuss later (see
the discussion of Example 5 in Section 3).

Example 2. Implicative relationships among features

BZ liT
MP
\\’4
ME DP
WF *
\d ¢/
DE---2>G

*DP implies G if the set is not a form of {0, 1, 2, 4},

While some of the implicative arrows of Example 2 follow
directly from the definitions of the features they connect, oth-
ers require more involved justification. At this point, we will
prove that each of the ten implicative relationships does indeed
hold.2 Readers who wish to skip the following proofs may pro-
ceed to Section 3 of the paper. We will proceed with the proofs
in the following order:

(1) BZ implies ME. (6) DT implies MP.

(2) BZ implies MP. (7) MP implies WF.
(3) ME implies DE. (8) WF implies DE.
(4) WF implies G. (9) DT implies DP.

(5) DT implies ME.  (10) DP implies G (if the set is

not a form of {0, 1, 2, 4} ).

In both (1) and (2), we are dealing with a scale, S, that is BZ.
By the definition of BZ, there must be an integer k = 3 such that
S has parameters ¢ and d where ¢ = k(k + 1) andd = g =
2k + 1. Recall that two integers x and y are relatively prime if
and only if they share no factors greater than 1; i.e., the greatest
common divisor of x and y, gcd(x,y), is equal to one, or more
compactly, (x,y) = 1. Let us begin with the following fact.

Lemma 1.1. If k is a positive integer, then the integers k(k +
1) and 2k + 1 are relatively prime.

PROOF: Suppose that k(k + 1) and 2k + 1 are not relatively
prime. Then there exists a prime p such that p | k(k + 1) (ie.,
pdivides k(k + 1)) and p |2k + 1. Now, p |[k(k + 1) > p |k or
p|k+1.If p| k then 2k+1 = 1 mod p, contradicting p | 2k + 1.
Thus, p|k + 1. Butthen2k + 1 =2(k + 1) — I = —1 mod p,
also a contradiction. H

2Although we believe that Example 2 is a complete statement of the pair-
wise implications among the eight features, we will not give counterexamples
to disprove the other possible relationships. Constructing such counterexam-
ples can be quite instructive nevertheless, as readers can verify for themselves.



Lemma 1.1 tells us that (c,g) = 1 for all Balzano scales S.
Assuming, without loss of generality, that S is at the appropri-
ate transpositional level, we can write S in generated order:
S = {0, g, 2g, ..., (d — 1)g} (expressions evaluated mod c).
Therefore, S = {0, 2k + 1, ..., 2k(2k + 1)}. Note that the final
generated pc in S is

2k(2k+1) = 4k* + 2k

2(k? + k) + 2k?
2¢c + 2k?

= 2k? mod c.

Therefore, if we were to generate an “extra” pc in S, we would get

2kk + 1) + 2k + 1) 2k + 2k + 1 mod ¢
2c+ 1 mod ¢

1 mod c.

Thus, by Carey and Clampitt’s (1989) closure condition, S must
be WF; in fact, S is non-degenerate WF since (c,d) = 1. (A
degenerate WF scale is one in which the generating interval
and the return-to-origin interval are equal. All other WF scales
are non-degenerate.) By Carey and Clampitt (1989, 201-2), S
must also have MP, proving (2).

In addition, every WF scale has the property that any two
adjacent pcs in scale order are spanned by a fixed number of
generating intervals, y, where the interval measure from the last
pc in generated order to the first is also included in this count.
In our present context, g has chromatic length (clen) 2k+1 and
the “left over” interval has clen

0 — 2k(2k+1) 2k+1) -1 mod ¢

2kmodc =g — 1.

Therefore, the interval spectrum of a step in S, <1>, is con-
tained in {yg, yg —1}, but since S has MP, <1> = {yg, yg —
1}. By Clough and Myerson’s (1985) Lemma 1, S must have
the consecutivity property, and therefore S is ME, proving (1).

Implication (3) is clear using the interval spectrum character-
ization of ME scales, and (4) is implicit in the definition of WF
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scales. In addition, (5) follows immediately from the definition
of DT, and it will help us prove (6). If S is DT, it must be ME
and (c,d) = 1. Therefore, by Lemma 1.3 in Clough and Douthett
(1991), no spectrum <I> of S can contain just one non-zero
integer. Thus, |<I>| = 2 for all I and S has MP, proving (6).

To show (7) and (8), we will use the fact that MP and non-
degenerate WF are equivalent properties of scales, stated in
Carey and Clampitt (1989) and proved in Carey and Clampitt
(n.d.). This equivalence has as a consequence the weaker rela-
tion between MP and WF stated in (7). Furthermore, since
clearly MP = DE, every non-degenerate WF scale is also DE.
We have yet to show that an arbitrary degenerate WF scale, S,
is also DE. Note that for such an S, (c,d) =d and g = c/d is a
generator. In fact, S = {a,a + c/d, ...,a + (d — l)c/d} (all eval-
uated mod c¢) forsome a € 0, 1, ..., ¢ — 1. Therefore

<1> = {c/d)
<2> = {2c/d}
<I> = {IeMd} foralll € 1, ..,d—1.

So |<I>| = 1 and S is DE, completing the proof of (8).

In order to show (9), DT implies DP, we shall prove a more
general lemma. Recall that if x is a real number, x| represents
the greatest integer less than or equal to x. An expression like
“x (mod ¢)” in the arguments of this section denotes the partic-
ular integer between 0 and c—1 equivalent to x modulo c.

Lemma 1.2. Any generated scale S with (c,g) = 1 and d =
(c/2jord = [c/2) + ] is adeep scale.

PROOF: Let S be a generated scale with c, g, and d as above, and
letv = [v,, ..., v,] be the ic vector for S, with n = [c/2}. Note that
any scale embedded in a universe of size ¢ = 3 or less has only
one entry in its ic vector, and thus is trivially deep. Thus, we need
consider only those scales with ¢ > 3.

If g > ¢/2, then —g mod c is also a generator of S, so we can
assume without loss of generality that 0 < g < ¢/2. It is clear
that Vv, = d—1, since S is some transposition of S’ = {0, g, 2g,
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..., (d—1)g} (all mod c) and dg # 0 mod c for ¢ > 3. Knowing
that this “generalized circle of fifths” ordering of S has pre-
cisely one break in it leads us to the broader observation that

Vomp = d—1—-(@m-1),form=1,2,..,d-1

= d-m

x mod ¢, if 0 < x(mod ¢) = ¢/2

where 6 (x) = [ .

¢ —xmodc,ifc/2 < x(modc) <c.
Now, if we could show that this inequality is actually an equal-
ity, then we would be well on the way to showing that all of the
entries of v are distinct. Let us first show that the above inequal-
ity applies to d — 1 elements of v.

Claim 1.2.1. 6 (mg), wherem =1, .., d — I, generates d —
1 distinct integers.

PROOF—CLAIM: Certainly, mg (mod c) yields d — 1 distinct
integers form =1, ...,d — 1 becaused — 1 < c and (c,g) =
1. Suppose §_(m,g) = 6 (m,g) for some m, m, €1, .., d —
1. Then either: (1) m,;g = m,g mod ¢ > m; = m,, and we

are done; or (2) mg = —m,g mod ¢ > m; = — m, mod c.
However,d = (¢/2jord = ¢/2) + I,s0d — 1 =¢/2. In
order form; = — m, mod ¢, we must have m; = m, =

d — 1 = ¢/2, and our claim is proved.

The claim shows us that the multi-set W = {v, |lmel,..,
d — 1} contains d — 1 entries from the ic vector v of S, although
we are not yet sure that W consists of d — 1 distinct integers.
Let us look at two cases based on the cardinality of S.

Case I:d = (c/2) + 1
Here, (¢/2) = d — 1, so W contains all of the entries of v. The
sum of the entries must equal

<d>=d(d‘1) —1+2+4.+d-1.
2 2

But in order to get this sum, the inequality above must be an
equality: v, (ng) = d—mform =1, ..,d — 1, since all entries
of v must be less than d. If any of the entries of v were larger
than the minimum required by the inequality, the sum of the

entries would be too high. Thus, the entries of v are the integers
from I tod — 1, and S is deep.

Case 2: d = |c/2)

Now, W contains all but one entry of v. Again the sum of the
entries is I + ... +d — 1, and again, this requires that vy, =
d—m form = 1, ..., d — 1. The remaining entry of v must be
zero since the sum of the other entries (which are all non-zero)
is equal to the total sum of the entries of v. Thus, the entries of
v are the integers fromOtod — 1, and S is deep. B

By definition, d = ¢/2 + 1 and (c,d) = 1 for all diatonic
scales S, which by Clough and Douthett’s (1991) Theorem 3.1
implies that S is generated. Furthermore, since d > c/2, the
generator of S must be relatively prime to c. Therefore, the con-
ditions of Lemma 1.2 hold for diatonic scales, and invoking this
Lemma, we have shown (9).

Implication (10), DP implies G if the scale is not a form of
{0, 1, 2, 4}, is somewhat more difficult to show and will
require proving a number of lemmas first. Fortunately, these
lemmas are also useful as further formal characterizations of
deep scales mentioned in passing by Gamer (1967). The first
two lemmas below work towards determining the possible dia-
tonic cardinalities and the makeup of ic vectors of deep scales,
and the next two use this information to analyze the structure of
such scales.

Lemma 1.3. If a scale S has parameters ¢ and d, where ¢ =
5, and d is an entry in the ic vector of S, then there are at least
two equal entries in that ic vector.

PROOF: Let v = [v,, v,, ..., v, ] be the ic vector of S, and note that
n = (c/2). Suppose that there exists ani € 1, 2, ..., n, such that
v, = d. Note that if ¢ is even, i # ¢/2, since the maximum value
of the “tritone” entry of vis d/2. Forallx € S, x + i (mod ¢) €
S. Therefore, for all x € S, x + 2i (mod ¢) € S as well. Let us
consider two cases.

Case 1: 2i # ¢/2
Since x + 2i (modc¢) € Sforall x € S, v, = d, where



. { 2i, if 2i = (¢/2,
c— 2i,if 2i > lC/2.|'

Thus, we are guaranteed two distinct “d” entries in v if i # j.
Suppose i = j. Since i # 2i, we have i = ¢ — 2i <= ¢ = 3i, and
2i > (/2.
Let 0= {y € S|y+1 (modc) € S}. Since ¢ > 2, v, = [0].
Let ' ={y" € S|y + 1+ i(modc) e S}. In this case,
because ¢ = 3i = i=c¢/3<c¢/2 ~1forc =5, wehavev,, , =
|0'|aslongasi+ 1 # c/2<>i# 2. Butifi=2,then S is some
transposition of {0, 2,4}, 0r S = {0, 1, 2, 3, 4, 5}, yielding ic
vectors of [0 3 0] and [6 6 3], respectively, and we are done.
So assuming that i # 2, take somey € (. Theny + 1 € S =
y + 1 +i e S (all mod ¢) since v, = d. Therefore, y e (0’ and
O C @' Similarly, ify’ € @', theny’ + 1 +i(modc) € S =
y+1+i+2i=y +1(modc)e S,andy’ € 0= @' C
0. Thus, 0= @' andv, = v, .
Case 2: 2i = ¢/2

Here, 4i = c. Let 7= {x € S| x + 1 (mod c) e S}. Note that
v, =|7|sincec>2.Let 7' = {x' € S|x" + 1 + i (mod ¢)
€ S}.Becausec =di =i=cd=c2—-1forc=5v, =
|7"|aslong asi+1 # c/2<=i# 1.Buti=1=c¢ =4, s0
i# 1

Ifx e 7,thenx+1eS=x+1+ieS@Imodc)andx e
7" which implies 7 C 7. Similarly, if X' € 7', then x’ + 1
+i(modc)e S=x"+1+i+3i=x"+1(modc) €8S,
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o= (d)=___d(d"” —142+.+d- 1
2 2

We know that the sum(d — 1) + (d —2) + ... + (d — n)is an
upper bound on ¢ from the unique ic multiplicity property of S
and the fact that v, < d, fori = 1, 2, .., n (by Lemma 1.3).
Therefore,

@-D+..+1=s@-D+..+d-n).

Thus, nmustbedord — 1 = d = [c¢/2] or [¢/2] + 1, and the
two sums are equal. Hence if d = |¢/2] then the entries of v are
{d—1,d—-2,..,0}andif d = [c/2) + 1 the entries are {d —
,d—2,.,1}. &

Lemma 1.5. Suppose S is a deep scale with ¢ = 5 and ic
vector v = [v,, ..., v, ] where vV, = d — 1. Then S is generated
by q if and only if (¢c,q) = 1.

PROOF: Note that the existence of a q such that Ve = d—1is
guaranteed by Lemma 1.4.

(==) Suppose (c,q) = 1. There is a unique element of S, a,, such
that a, — q (mod ¢) ¢ S, and another unique element, a, € S,
such thata, + q(modc) ¢ S. Let S’ = {a, + iqg(modc)|i =
0, 1, ..., k, where a, + kq = a, mod c}. Since (c,q) = 1, such a
k will exist, and S’ will consist of k + 1 distinct elements of S
=k=d - 1.Ifk <d — 1, then we can find an element x €
S — S’. Since x # a, or a,, we have {x + nq (mod c) |n =0,
I,...} €S =S8 ={0,1,..,c—1} which is not possible. Thus
k =d—-1=S" =8 = Sis generated by q.

andx’e.TThus.T’g‘Ta,T’=,7'andvl=vi+1.I )
] ) ] (=) Suppose S is generated by q and (c,q) > 1. Thend =< ¢/2.
Lemma 1.4. Suppose S is a deep scale in a universe of car- By Lemma 1.4, we are left with two possibilities for the cardi-
dinalityc = 5. Thend = (c/2;, ord = c/2, + 1, and entries of nality of S:
the ic vector of Sared — 1,d — 2, ..., 1, and possibly O (if and yd =cn, if ¢ is even
only ifd = (c/2,). ‘ , @)d = (c - )2, ifcis odd.
PROOF: Suppose the ic vector of Sis v = [v,, ..., v ] where n = Ifd = c/2, then (c.q) = 2, and S consists of all non-negative

/2. Si is deep, all of the entries in v are unique. . . .
c/2,. Since S P ¢ entries In v que. Let even integers less than c or all non-negative odd integers less
n

than c. Therefore, v, = d, and by Lemma 1.3, S is not deep,
o= 2 V; contradicting our original premise.
i=1 If cis odd, then (c,q) =3 =d =¢c/3. By (2), (c — 1)/2 = ¢/3
Note that = ¢ = 3, contradicting our restriction on c. l
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Lemma 1.6. Suppose S is a deep scale with ¢ = 5 but ¢ # 6,
and ic vectorv = [v,, ..., v, | where v, = d — 1. Then(cq) = 1.

PROOF: Recall that n = (¢/2} and that if ¢ is even, v, = d/2. In
fact, from Lemma 1.4, if ¢ is even and subject to the restrictions
stated above, then d/2 < d — 1. Thus, q < c/2.

Suppose (c,q) > 1, and consider the set A = {mq (mod ¢) | m
=0, 1,..}. Then |A | = ¢/2. Now, from Lemma 1.4 we know
thatd = (¢/2j0r 1¢/2)+ 1. Soaslongasd # (c — 1)/2,|A| =
d. But if d = (¢ — 1)/2 then ¢ must be odd, therefore (c,q) >
2=|A|=cB3=Qd+ 13 =dforalld e Z*. So we have
shown that |A | = d for all d. With this information, we will
construct a quasi-cyclic representation of S.

Since Ve = d—1, we can find a «; € S such that there exists a
“complete q-cycle™ embedded in S: F; = {a}, o, + q, o) +
2q, ..., «; + Bq = o} (all elements taken mod c), where
[F, | = B = |A|. (The existence of at least one such full g-
cycle is guaranteed: if there were no such cycle, there would be
at least two “partial q-cycles” (since |A | = d) in S, implying
the existence of at least two elements of S which were not T,

related to any other elements of S.) Note that if F| = §, then A
= d, which is not possible; so F; # S. Find an element x e
S—F,. If possible, find such an x so that x = a, is a member of
another full g-cycle in S, F, = {a), a0, + @, ..., o, + Bq = o}
(all mod c). If no such x exists, choose x such that it begins the
unique partial g-cycle in S, P = {x,x + q, ..., x + bq} (all mod
¢), where x + bq # x mod c. In this latter case, we have neces-
sarily enumerated all of the elements of S: S = F, U P, where
this union is disjoint. Continuing this process iteratively, S can
be partitioned into r > 1 full g-cycles, F|, ..., F,, and one partial
g-cycle P. Note that P must be non-empty, or else A would be
equal to d.

Let Y be a pc set. Define UP(Y) to be the set of all unordered
pairs of distinct elements in Y. Furthermore, define the function
VCTR on unordered pairs of disjoint pc sets in c-space such
that VCTR(A,B) = [w, wW,, ..., ch/2]]' where w; is the number
of pairs (a,b), a € Aand b € B, such that int(a,b) =iorc — i.

3This is unrelated to David Clampitt’s (1997) Q-cycle.

Note that indeed VCTR(A,B) = VCTR(B,A). Finally, define
VCTR((A,B) to be the entry w, in the vector VCTR(A,B).

As we have shown above, S = F, UF, U ... UF, U P, where

these component sets are all disjoint. Let Xg = {F, ..., F, P}.
If V, is defined to be the ic vector for the pc set Y, then

V= Vg = VF+ Vgt + WP+ vp + Y VCTRAB)  (Eq. 1)
(A,B) e UP(Xg)

Consider v, = |T,(S) N S|. Because (c,q) > 1, for any set X
e X, | T,(X) N X | = 0. Similarly, ITHq(X) N X|=0forall
X € X,. However, it is not immediately clear that v, = IT,, q
(S) N S| since 14+ q may be greater than n = |¢/2,, in which
case v, g is undefined, or it could be equal to ¢/2, implying that
Vieg = IT1 +q (S) N'S |/2. Let us therefore determine the condi-
tions under whichv,, = |T,, (S) N S|

Claim 1.6.1. (/)Ifcisoddandc =5,theng + 1 < ;c/2,
(2)Ifcisevenand c > 6, then q + 1 < ¢/2.

1+q I+q

PROOF—CLAIM: In both cases, we know that q < c/2. We
will treat each case separately.

(1) Sinceq + 1 <c¢/2 + 1 and c is odd, we know thatq +1
= (c+1)/2. Suppose q + 1 = (c+1)/2. Thenc = 2q + 1.
But q and 2q + 1 are relatively prime: if p divides q then
it cannot divide 2q + 1 unless p = 1. This contradicts
our assumption that (c,q) > 1. Therefore q + 1 <
(c—=1)/2 = |c/2y.

(2) Sinceq + 1 <c/2+ landciseven, weknowthatq + 1 =
c¢/2. Suppose q + 1 = ¢/2 with ¢ > 6, and consider (c,q)
= (c,c/2 — 1). Find p > 1 such that plc and p| (c/2 — 1).
Then there exists an integer k such that ¢ = kp and
pl(kp/2 — 1). There exists another integer k' where
kp2 — 1 = k'p == p(k — 2k’) = 2 <= p = 2. Thus,
(c.q) = 2. Therefore, |F,| = ¢/2. If d = ¢/2, then S =
F,, which is a contradiction; so d = ¢/2 + 1. Therefore,
P must consist of a single element s, and S = F, U {s}.
Hence, v, = d — 1 which implies that q = 2 because the
entries of v are unique. By our assumption, we have ¢ =
6, a contradiction. This proves our claim.



Thus, under the conditions that ¢ = 5 and ¢ # 6, we are assured
that v, = [T, (S NS

Summarizing the results above, we have

= ITI(S) nsj ITI(X) NX|=0 forallX e X, and

IT @ NS T, X NX[=0 forall X e X

Y1

v

1+q 1+q

Combining this information with Eq. 1, we have
v, = 2 VCTR,(A,B), and (Eq. 2)

(AB)e UP(Xs)

Vieg = 2 VCTR, (AB). (Eq.3)
(A.B)eUP(Xg)
We will now show that the sums in Equations 2 and 3 are equal.
Consider (PF,) € UP(X,) where i € 1, ..., . Then we have
VCTR,(PF) = |T,(P) N F,| + |T,(F) N P|, and
VCTR,, (PF) = TP NF|+]|T_ (F)NP|

Now, in general, |A N B| = [T (A) N T,(B)| for any k. In
addition, in the present context F = Tq(Fi) since F; consists of
a full g-cycle. Therefore, T|(F) = TqH(Fi), and

l+q 1+q

I T,®)NF|=|T,, (P NTF)| =T, (P)NE] and
ITE)NP| =T (F)NP|
Thus,
VCTR,(PF) = VCTR,  (PF). (Eq. 4)

Similarly, consider (Fi,Fj) e UPXg) fori,j e 1,..,r (i #j).
Then
VCTR,(Fi,Fj) = |T|(Fi) N Fjl + |T1(Fj) N F,|, and

VCTR,, (F,F) = [T, (F) N | + [T, (F) NF,].

By arguments analogous to the previous case, we get

VCTR,(F,F) = VCTR,, (F,F). (Eq. 5)
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Equations 4 and 5 show us that the terms of the summations in
Equations 2 and 3 are identical, proving that

2 VCTR,(A,B) = 2 VCTR,, (A,B).
(A,B)eUP(Xy) (A.B)eUP(Xy)

Thusv, =v, @ contradicting our original premise that S is deep.
Therefore, our assumption that (c,q) > 1 was incorrect and (c,q)
=10

The majority of the work towards showing implication (10)
is now complete. We need only combine the information about
deep scales gleaned by the lemmas and clean up the leftover
business related to possible anomalies in small universes. This
is done in the following theorem.

Theorem 1.7. If S is deep and S is not a transpositional form
of {0, 1, 2, 4}, then S is generated.

PROOF: Let us begin by assuming that S is embedded in a uni-
verse of size ¢ = 5 and ¢ # 6. Suppose S has ic vector v = v,
«» V] where v, = d — 1 (by Lemma 1.4, we know that such a
q exists). By Lemma 1.6, (c,q) = 1. Therefore by Lemma 1.5,
S is generated by q and we are done.

Note that every scale of diatonic cardinality 1,2, ¢ — 1, or ¢ is
trivially generated. In particular, every scale in a universe of
size ¢ = 4 is necessarily generated. Thus, we are left only with
the ¢ = 6 case.

If the deep scale S is embedded in a universe of size ¢ = 6,
then d = 3 or 4 by Lemma 1.4. For d = 3, there are four non-
transpositionally equivalent forms, listed here with their ic
vectors:

{0,1,2}4 [210]

{0,2,4}, [030]

{0,1,3}, [111]

{0,1,4), [111]

Of these, only {0,1,2} is deep, and it is also generated by 1.
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For ¢ = 6 and d = 4, there are three non-transpositionally
equivalent forms:

{0,1,2,3}, [321]
{0,1,2,4} [231]
{0,1,3,4} [222]

Of these, {0,1,2,3}, and {0,1,2,4}, are deep, but only
{0,1,2,3}¢ is generated (again by 1). B

The appearance of a single exception to the rule that DP =
G may seem curious, but its existence follows fairly naturally
from the argument presented in the proof of Lemma 1.6,
specifically from Claim 1.6.1. In colloquial terms, scales exist-
ing in small universes are sometimes simple enough to have
the properties of DP and G without fulfilling more complicat-
ed structural requirements normally associated with these
properties in the context of a larger universe. Every scale in
universes of ¢ = 5 is generated, so ¢ = 6 is a kind of “break-
ing point” for the property G. The breaking point for DP is
slightly higher, resulting in the anomalous transposition class
inc = 6.

We end this section with a corollary that brings together
much of the work on deep scales done here and presents an
alternative characterization of sufficiently large deep scales
based on the parameters c, d, and g.

Corollary 1.8. Take any scale S in a universe of sizec =5
where § is not transpositionally related to {0, 1, 2, 4] . Then §
is deep if and only if S is generated by g where (c,g) = 1 and S
has cardinality d = ;c/2; or (c/2; + 1.

PROOF: (==) Follows immediately from Lemma 1.2.

(=) If S is deep with ¢ = 5, then by Lemma 1.4, d = ¢/2; or
/2, + 1. Furthermore, if ¢ = 5 but ¢ # 6, then Lemma 1.6
locates a g such that (c,q) = 1 and Lemma 1.5 guarantees that
q generates S. Finally, if ¢ = 6 but S is not a transpositional
form of {0, 1, 2, 4}, then the proof of Theorem 1.7 shows that
S must be generated by 1. I

3. FEATURE SETS

Assuming that Example 2 is exhaustive in its portrayal of
implicative relationships among the features, one might suspect
that any set of features consistent with these implications—one
can count twenty such (non-empty) sets—would be instantiat-
ed by a set of pcs somewhere, in some universe. But this is not
the case. As we will show, there are sets of features consistent
with Example 2 that are incapable of instantiation by actual
pcsets. We are in fact able to construct pcsets consistent with
just thirteen of the twenty sets of features that are consistent
with Example 2. These peculiarities of instantiation seem to
arise from the fact that the various features address properties
that are not all commensurable with one another.

The twenty sets of features consistent with Example 2, which
we call potential feature sets or PF-sets, are summarized in
Examples 3a and 3b, the former listing the instantiated PF-sets,
or F-sets, and the latter listing the uninstantiated PF-sets. In both
examples, the sets are listed in the order of greatest to fewest
number of features present. Each PF-set is characterized by those
features (indicated by %’s) necessary to imply all of the features
(indicated by *’s and ¢’s) held by its class, based on the
implicative relations in Example 2. Those thirteen PF-sets which
can be instantiated—the F-sets—are assigned numbers.

F-sets. Let us now look at the PF-sets that are instantiated
by pcsets. From Example 2, we see that of all the listed fea-
tures, only G and DE might appear in isolation, and indeed they
do appear so, as we will soon see. From the example we also
see that there are three pairs of features that might appear in the
absence of other features: namely (ME, DE), (G, DP), and (G,
DE); however only the first two of these are associated with
actual pcsets. At the other end of the spectrum—sets with many
of the cited features—we see from Example 2 that BZ and DT
may exist independently of each other; so it is not clear from
the example that any pcsets would have all eight features. But,
as mentioned above, there is in fact a class of sets—the usual
diatonic set-class in 12-pc space—that is associated with all



Scales, Sets, and Interval Cycles: A Taxonomy 85

Example 3. The PF-sets

a. F-sets
F-set Number of
number Features features Example
G DE WF ME MP DP BZ DT
1 (%4 (%4 (%4 v (%4 (%4 * * 8 {0,2,4,5,7,9, 11} (usual diatonic)
2 (%4 (%4 (%4 4 (%4 v * 7 {0, 2, 3, 5, 7}, (diatonic in 8-space)
3 v v v v v * 6 {0,2,5,7,9, 11, 14, 16, 18}, (BZ, k=4)
4 v v 4 * * * 6 {0, 2, 4}, (triad in 7-space)
5 v v 4 * * 5 {0, 3, 5, 8, 10} (usual pentatonic)
6 v v * * * 5 {0,2},
7 v v v * * 5 {0, 1,4,5, 8},
8 v v v * 4 {0,5,6, 11, 12} ,
9 (%4 (%4 * * 4 {0, 1,2, 3,4,5, 6}, (total chromatic)
10 (%4 * 2 {0, 2, 3, 6}, (DP, 3 step sizes)
11 v * 2 {0, 1,3,4,6,7,9, 10} (octatonic)
12 * 1 {0, 1, 4, 5, 8, 9} (hexatonic, DE alone)
13 * 1 {0, 3, 5, 10} (G alone)
b. Uninstantiated PF-sets
Number of
Features features
G DE WF ME MP DP BZ DT
4 4 v v v * * 7
v v * * 4
v v * * 4
v v * 3
* v * 3
v * * 3
* * 2
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eight features. Furthermore, the usual diatonic set-class is
unique in this respect, as shown in the following theorem.

Theorem 2.1. G(12,7,7) is the only scale with all eight
properties.

PROOF: Given the implicative relationships among features as
shown in Example 2, any scale that is DT and BZ will neces-
sarily possess all the remaining properties.

For DT scales,d = g = (¢/2) + 1 and ¢ = 0 mod 4.

For BZ scales, ¢ = k(k + 1)andd = g = 2k + 1 for some inte-
gerk (k > 2).

For scales that are both DT and BZ, then,
(c2)y+1=2k+1

or, by substitution,
kk+DR2)y+1=2k +1
(k2 + k)/2 = 2k

K2+ k = 4k
k+1=4
k=3

G(12,7,7) is therefore the only scale that is both DT and BZ,
and thus the only scale with all eight properties. l

In addition to the five instantiated sets of features mentioned
thus far (two singletons, two pairs, and one complete set) there
are eight other PF-sets that are represented by actual pcsets, for
a total of thirteen F-sets. All of these are listed in Example 3a,
along with a sample pcset corresponding to each F-set. We con-
ceive the relationship between the pcsets and the F-sets to be a
many-to-one mapping from the former onto the latter: a given
pcset corresponds to one and only one F-set—the F-set with
precisely all of its features.*

4As mentioned above, we are restricting our investigation to the special cat-
egory of pcsets that are composed of interval cycles or certain conjunctions
thereof. By “certain conjunctions thereof,” we refer precisely to combinations
of interval cycles that produce DE-sets. These pcsets correspond to scales that
have at least one of the eight features discussed, with the exception noted in
Theorem 1.7: the scales transpositionally related to the deep scale {0, 1, 2, 4} .

Let us scan the roster of F-sets in Example 3a, and note an
example of each. As shown above, F-set 1 is the only F-set corre-
sponding to a unique set-class (under transposition and inver-
sion)—the usual diatonic. Also this F-set represents the only inter-
section between DT and BZ. F-set 2 contains all DT-sets except
the usual one; the diatonic set in 8-space is shown in the example.
F-set 3, in parallel fashion to F-set 2, contains all BZ-sets except
the usual diatonic; the BZ-set in 20-space (k = 4) is shown.

F-set 4, first isolated by Agmon (1989), includes the triad in
7-space (shown), the 7th-chord in the same space, and other
sets where c is odd, d = (¢/2 + 1), and g = 2. F-set 5 repre-
sents the usual pentatonic (given as an example) and, as it turns
out, all complements of other DT-sets; these are Clough and
Douthett’s (1991) hyperpentatonic sets.

Deferring comment on F-sets 6-8 for the moment, we note
that F-set 9 embraces equal-tempered chromatic scales in all
universes (the one in 7-space is shown); these are Carey and
Clampitt’s (1989) degenerate WEF-sets.

F-sets 11 and 12, correspond respectively, to the sharply
restricted cases with DE and ME only or DE only, exemplified
here by the usual octatonic and the hexatonic set (after Cohn
1996). Note that these two F-sets alone lack G; we comment
further on F-sets 11 and 12 below, in two different contexts.

Two F-sets correspond to G-sets with only one additional
feature (as in F-set 10) or no additional features (F-set 13). It is
notable that the first of these corresponds to all and only DP-
sets with three step sizes.

It is difficult to characterize the remaining F-sets (numbers 6-8)
in any way that speaks to intuition. They simply are what they are.
(We are indebted to David Clampitt for pointing out the instantia-
tion of F-set 7.) It is remarkable that F-set 6 is the only F-set aside

The theorem showed that these scales are not G, and since <2> = {2, 3, 4},

these scales are not DE either. From Example 2, we conclude that these scales
have DP and only DP. While it would have been possible to specify another F-
set category for this scale class, we have chosen instead to treat it as an anom-
aly, preferring to remain consistent with our original goal of categorizing only
those scales that are composed of interval cycles.



from F-set 1 corresponding to a finite (indeed very small) collec-
tion of sets; we comment further on this collection below.

The data of Example 3a, in the columns labeled “features,”
are re-formatted in Example 4, which lists the F-sets that include
each feature. With these data in hand, we can explore the com-
plex relationships within and among conglomerates- of sets
defined by means of logical operators over the features. Suppose,
for example, that we wish to look at pcsets that have DE and not
WF. We see that such pcsets correspond to F-set 11 (ME and DE)
and F-set 12 (DE only). Given that the octatonic and the hexa-
tonic are examples, respectively, of these two F-sets, we may
reasonably guess that the pcsets consistent with the logical
expression DE and not WF are precisely those that are symmet-
rical under (non-trivial) transposition and symmetrical under
inversion (Messiaen’s modes, for example), some of which are
ME and others not. Below we will show that this is in fact the
case.

The above conglomerate of pcsets, defined by a simple logical
expression over the features, and corresponding to just two F-sets,
is relatively easy to intuit. As an aid in grasping larger conjunctions
of F-sets that correspond to more complex logical expressions, the
representation of Example 5 is useful. The diagram allows us to
visualize the ranges of particular features and combinations of fea-
tures over the F-sets. Each F-set is assigned an area within the cir-
cle in such a way that, for any particular feature, the areas corre-
sponding to F-sets with that feature are contiguous. Thus, for
example, feature DP, found in F-sets 1, 2, 4, 6, 7, and 10 (see

Example 4. Extents of features across F-sets

G: 1-10, 13
DE: 1-9, 11-12
WEF: 1-9

ME: 1-6, 9, 11

MP: 1-5,7-8

DP: 1-2,4,6-7, 10
BZ: 1,3

DT: 1-2
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Example 4) may be viewed as a territory corresponding to these F-
sets (shaded areas of Example 6) thus providing a sub-taxono-
my—a classification of Gamer’s deep scales. Similarly, a sub-tax-
onomy of WF scales is evident in Example 7, where we see the
extent of such scales in the shaded areas of F-sets 1-9. The inter-
section of the shaded areas in Examples 6 and 7 (corresponding to
F-sets 1, 2, 4, 6, and 7) would contain all the scales with both DP
and WF. Fortunately this intersection is a contiguous area on the
map, but such is not always the case. The logical expression “G
and ME and not DT,” for instance, corresponds to F-sets 3, 4, 5, 6,
and 9; we see in Example 8 that the conglomerate of pcsets satis-
fying that expression is non-contiguous on the map.

What of the “ground” of Example 5—sets that lie outside
the circle? Given that F-set 13 contains sets with G only, we
conclude that all sets outside the circle are non-G sets. The

Example 5. “Map” of F-sets

N
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Example 6. Territory of DP scales
F-set features, (X) = not X

1 all

2 (BZ)

4 (BZ, DT)

6 (BZ, DT, MP)
7 (BZ, DT, ME)
10 G, DP

converse (that all sets within the circle have G) would appear to
be false, as F-sets 11 and 12 lack G. However, pcsets corre-
sponding to these F-sets are, in fact, generated, in the sense that
they are composed of smaller, identically generated sets that
divide the octave equally, where the smaller sets are themselves
disposed at equal intervals. This is the expanded sense of “gen-

Example 7. Territory of WF scales
F-set features, (X) = notX

1 all

2 (BZ)

3 (DP, DT)
4 (BZ, DT)
5 (DP, BZ, DT)
6 (MP, BZ, DT)
7 (ME, BZ, DT)
8 (ME, DP, BZ, DT)
9 (MP, DP, BZ, DT)

erated” indicated by the broken arrow in Example 2. The pcsets
of F-sets 11 and 12 are thus examples of sets held invariant
under non-trivial transposition—a special category of such
sets, however. In this sense of “generated,” then, Example 5 is
a map of precisely all and only generated pcsets—that is to say,
pcsets based on interval cycles.



Example 8. Territory of scales with G and ME and not DT
F-set features, (X) = not X

3 (DP, DT)
4 (BZ, DT)
5 (DP, BZ, DT)
6 (MP, BZ, DT)
9 (MP, DP, BZ, DT)

Toward further exemplification of the F-sets, and as an
interesting exercise for its own sake, let us examine a familiar
scenario. We put g, a generator, equal to interval seven and set
it running in 12-pc space. The results, shown in Example 9, are
comparable to those derived from a similar exercise in Carey
and Clampitt (1989).

Uninstantiated PF-sets. We shall now investigate the nature
of the seven PF-sets that are consistent with the implicative dia-
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Example 9. Tour of U,, withg =7

n G(12,n,7) F-set
0 () 13:G?
1 {0} 9: G, WE, ME, DE
2 {0,7) 5: G, MP, WF, ME, DE
3 {0,2,7) 5
4 {0,2,7,9) 13
5 {0,2,4,7,9) 5
6 {0,2,4,7,9, 11} 10: G, DP
7 {0,2,4,6,7,9, 11} 1: all features
8 {0,1,2,4,6,7,9, 11} 13
9 {0,1,2,4,6,7,8,9,11) 13
10 {0,1,2,3,4,6,7,8,9, 11} 13

11 {0,1,2,3,4,6,7,8,9, 10, 11} 5
12 {0,1,2,3,4,5,6,7,8,9 10, 11} 9

gram in Example 2, but that seem to lack concrete examples.
Our goal will be to prove conclusively that these PF-sets pos-
sess internal inconsistencies rendering them uninstantiable in
any chromatic universe. Example 10 presents the seven PF-sets
grouped into three categories. Each category will be investigat-
ed separately, and all details of the analysis pertaining to a
given category will apply to all PF-sets within that category.
Also included in Example 10 are the general strategies that will
be used to approach each of the three PF-set categories.
Proving the non-existence of the Category 1 PF-set is simply a
matter of showing that a scale cannot be both BZ and DP with-
out also being DT. All of the Category 2 PF-sets are DE and G,
but none are WF; so if we can show that being both DE and G
forces a scale to also be WF, then we would be sure that no
Category 2 PF-sets can be exemplified. The two Category 3
PF-sets are WF, but neither is ME or MP. Thus, if we knew that
all WF scales were ME and/or MP then these two PF-set possi-
bilities would be ruled out.

Before the demonstrations of these facts are given, a gener-
al comment about the proofs is in order. The arguments given
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Example 10. Four categories of the seven uninstantiated PF-sets

Characterizing
Category  PF-set features Strategy

1 BZ, DP Show that BZ and DP imply DT

ME, DP
2 ME, G

DP, DE

DE, G

3 WEF, DP
WF

Show that DE and G imply WF

Show that WF implies ME and/or MP

below use little mathematics beyond modular arithmetic and
basic number theory. Portions of some of the proofs make use
of elementary group theory. The style of the proofs is meant to
be as colloquial as possible without sacrificing any mathemat-
ical rigor. By presenting the arguments in this way, it is hoped
that the reader who does not follow every detail of the proof
can still comprehend the general approach, the underlying
methodology, and the intermediate results which comprise the
“background structure” fueling the line-by-line momentum
within each demonstration. Readers who wish to skip the
proofs, however, should proceed to Section 4.

Category 1

Category 1 is the simplest case to deal with because both BZ
and DP have characterizations based solely on the values of c,
d, and g. The definition above represents BZ in just this way,
and the alternate form of the definition of DP given in
Corollary 1.8 can be used in this context since every BZ scale
requires ¢ to be at least 12, which is greater than 6. We are
ready for our first result.

Theorem 3.1. All scales S that are both BZ and DP are also
DT.

PROOF: Recall that the definition of BZ requires ¢ = k(k + 1)
and d = g = 2k + 1, where k is some integer greater than 2.

Since c is a product of consecutive integers, it must be the prod-
uct of an even integer with an odd. Any such product is neces-
sarily even, so we know that c is even for all BZ scales.

From the Corollary 1.8 characterization of DP and the fact that
ciseven, d must be ¢/2 or ¢/2 + 1. Combining this with the def-
inition of BZ, we know that

d=k(k + I)/2ork(k + 1)/2 + 1.

Furthermore, d = 2k + 1; so substituting for d we get the fol-

lowing:
2k +1 = k(k+ 1)/2 OR 2k + 1 = kk + 1)/2 + 1
4 +2 = k¥ +k 4k = k2 +k
0 = k*-3k-2 0 = k?-3k
0= kk - 3)
k=3t2\/1_7 OR k=0o0r3

The solutions on the left are non-integers, leaving 0 and 3 as the
only possibilities for k. But the definition of BZ stipulates that
k is greater than 2, so k must be 3. Substituting k = 3 back into
the original equations yields

c=12andd=g=17.

From our knowledge of scales, we know exactly what these
parameters imply: the familiar diatonic in the usual chromatic
universe. Since d is odd, ¢ = 2(d — 1), and we know the usual
diatonic to be ME, it is also DT. B

Note that the proof of Theorem 3.1 actually shows that not
only does a scale with BZ and DP have to be DT, but it has to
be the usual diatonic, i.e., the major scale embedded in the 12-
note universe. This should not surprise us, given that the usual
diatonic is the unique scale with all eight features (Theorem
2.1).

Category 2

To show that Category 2 PF-sets cannot exist, we will pro-
ceed by proving that all such scales have properties that force
them to be WF. The strategy will be to show that the lack of MP



in Category 2 F-sets enables one to conclude that such scales
are not just generated, but cyclically generated. In other words,
knowing that the Category 2 scale S is generated implies that S
is of the form {a, a1l g, a 1 2g, ..., al(d 2 1)g} (all evaluated
mod c), but we will go even further to prove that the “last” ele-
ment in generated order is g chromatic steps from the “first”
element:

[a+(d— 1g] +g=a(modc)

This is obviously not true of all generated scales; one need go
no further than our familiar diatonic scale to find a counterex-
ample. Any cyclically generated scale is necessarily WF; in
fact, such a scale is degenerate well-formed, by definition.

The proof of the theorem in question is possibly the most
complicated of the paper. Unfortunately, tidy parameter rela-
tionships which helped us in our proof of Theorem 3.1 are not
readily available in the context of Category 2 PF-sets. Arguing
by cases, the proof of Theorem 3.2 builds up the machinery
necessary to compare the representation of S in scalar order to
that in generated order.

Theorem 3.2. All scales S that are both DE and G are also
WEF.

PROOF: Suppose S is both DE and G. Then it has a generator g
suchthat S = {a,a + g,a + 2g, .., a + (d — 1)g} (all mod ¢)
for some integer a, 0 = a < d. For purposes of cleaner notation,
we will assume without loss of generality that a = 0. Note that
if a were not 0, then we could transpose S by —a chromatic steps
to obtain the desired form. Since the scalar features that we are
investigating here are preserved under transposition (in fact, all
eight features have this property), such a transformation will not
affect the relevant properties of the scale. Thus, we will take S
to be {0, g, 2g, ..., (d—1)g} in generated order, each expression
evaluated modulo c. In scalar order, S = {d, d,, .., d;_,}.
Throughout the paper, the subscripts of d will always be taken
modulo d unless otherwise stated. Note that since 0 € S, d, = 0.

If S has MP, then it must be WF (and therefore is not a
Category 2 PF-set), and we would be done. Thus, for the
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remainder of the proof, we will assume that S does not have
MP.

Since S is DE, we know that every generic interval (i.e., dia-
tonic interval) comes in one or two chromatic sizes. But since S
does not have MP, there must be at least one dlen I that only
comes in one chromatic size. Say <I> = {a}. Therefore, we
have

d;,; — d;=a(modc) (Property 1)
forallj e Z,

Consider the subset of S,
A={d,d,d,, ..}

There are two important things to notice about A. First, since all
adjacent elements of A (in this representation, not necessarily in
scalar order) are separated by I diatonic steps, they are all mul-
tiples of a:

dy=0,d, =a,d, =2a,..d; = ja(mod c)

Second, the cardinality of A is dependent on the relationship
between the integers I and d. We will rely on the former obser-
vation to gain insight into the inner structure of S, and we will
utilize the latter to break up our proof into manageable pieces.
The three cases to consider are: (1) I and d are relatively prime,
(2) I divides d (i.e., d is a multiple of I), and (3) I and d have a
common factor greater than 1 and less than I. We investigate the
cases in this order.

Case 1: (I,d) =1

If T and d are relatively prime (with I < d), then I is a generator
of the group Z,. Therefore, the set of subscripts of the elements
dj in A are all of the integers between 0 and d — 1 inclusive.
Thus, as unordered sets,

A=1{04a2a,..(d— 1)a}(almodc) =S.

Since the diatonic distance between d(d—l)l = (d—1)a mod ¢
and d; = d;, = 0 is I, by Property 1 the chromatic distance
between the two is a. Thus, S is cyclically generated by g = a.
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Because the generator a always spans I diatonic steps, S must
be WF.

Case 2: (I,d) =1

Since I divides d, we can find a 3, 0 < 3 < d, such thatd = BI
(this is an equality, not just a modular equivalence). Since B is
the smallest number of I’s that need to be summed so as to
arrive at an integer equivalent to 0 mod d, the cardinality of A,
| A |, must be B. Therefore,

A= {dy=0,d,dy, ..dg ).

In this particular case, it is important to notice that the sub-
scripts of d do not need to be reduced modulo d: they are all
strictly less than d, since BI = d. Therefore, the representation
of A above is in scalar order: jI < il implies djl <d,;, for all inte-
gers i, j where 0 = i,j < . From these observations, we also
know that Ba = 0 mod c, because each dlen I corresponds to a
clen a.

Given these facts about A, we can construct the following
matrix representation of S:
r

dy=0 d, d

21 d

B-Dl
dl dl+l d2|+| d(p—1)1+1

d, d d v dg_
S= 2 G2 Qa2 (B-DI+2 (Matrix 1)

L d d d d §

-1 21-1 30-1 BI-1

The following three observations can be made about Matrix 1:

(1) Matrix 1 is a scalar ordered representation of S with no
duplicate elements. The ordering is apparent by reading
down the columns and skipping back up to the first ele-
ment in the next column after reaching the bottom.
Since each column contains I elements and since there
are 3 rows, the number of matrix entries is I, which is
d (see above), the cardinality of S.

(2) The first row of the matrix is the scalar ordered repre-
sentation of A.

(3) Since the dlen between any two horizontally adjacent
elements in the matrix is I, the clen between such ele-
ments must be a. Therefore, all rows of the matrix are
ordered transpositions of A.

Recall that S is of the form {d, = 0, g, 2g, ..., (d — D)g} (all
mod c) for some generator g. Since A C S and A is cyclical-
ly generated by a, we can view A as being cyclically gener-
ated by kg = a mod c, where k is the number of generating
intervals, g, it takes to get from djl tod Since Ba =0
mod ¢, we have

G+ nr

B(kg) = 0 mod c.

This equation suggests that Matrix 1 may be able to give us
some information about the nature of g. If we could say a lit-
tle more about Bk, the equation could lead us right to our
desired result. However, to get the requisite mileage out of
the equation, we will need to fiddle a bit with the ordered
representation of S.

Choose the smallest integer r, 0 < r < d, such that rg = aa
mod ¢ for some a where 0 < a < {3. In other words, r is the
smallest integer such that rg (mod c) is a multiple of a (mod
c); or equivalently, r is the smallest integer such that rg (mod
¢) is an integer somewhere in the top row of Matrix 1, i.e.,
somewhere in A. We know that such an r exists because A
C S = {rg (mod ¢) | 0 = r < d}. The reason we are suddenly
so concerned with this r is that it turns out that A is com-
posed completely of multiples of rg. This is proven in the
following lemma.

Claim 3.2.1. Using the definition of r just given, A =
{nrg (modc) [0 =n < B}

PROOF—CLAIM: Since mrg = maa (mod c¢), we know
that all multiples of rg, mrg, are in A, which is composed
solely of multiples of a, modulo c¢. We will proceed to
show that A is composed only of multiples of rg, using a
proof by contradiction.

First, recall that all elements of A are integral multiples of
g mod c. Suppose that there exists a positive integer y
such that yg (mod c) € A, but yg # nrg (mod c), for any
positive integer n. Now, since A is composed of multiples



of a, there exists an integer a’ such that yg = a’a (mod
c). Because r was the minimal element with this property
and y # 1, v > r. Using the division algorithm, we can
express 7y uniquely as

vy=Qr+ R, where 0 <R <r.

Note that since <y is not a multiple of r, R is non-zero.
Substituting into the equation above, we have the following:

Qr+R)g = a'a (mod ¢)
Qrg+Rg = «a'a (mod ¢)
Rg = a'a— Q(g) (modc)
Rg = a'a—Qaa (modc)
Rg = (o' — Qma (modc)

So, Rg is a multiple of a, with R < r. But this contradicts the
assumption that r was the smallest integer that yielded a
product rg that was a multiple of a. Therefore, no such vy
exists and all elements of A are multiples of rg, which
proves our claim.

Call A = {0, rg, 2rg, ..., (B—1)rg} (all mod c) the generated
order of A. Armed with this new information about A, we can
permute the columns of Matrix 1 based on the generated order
of A to obtain a representation (mod c) of S which is more com-
parable to the generated order of S:

d,=0 rg 2rg ... (B—Drg

d,+rg  d;+2rg ... d,+(B-Drg
, dytrg  d,+2rg .. d,+(B-Drg
S= (Matrix 2)

d_, d_,*+rg d_t2rg .. d_,+(B—-Drg

Applying arguments to Matrix 2 analogous to those made with
respect to Matrix 1, we know that

B(rg) = 0 mod c.
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Furthermore, Matrix 2 gives us the ability to say something
about Br, which we were not able to do with Bk above. Between
any two consecutive elements in the generated order of A, there
are r elements in the generated order of S (if there were fewer,
r would not be minimal, as required):

S
A

{0, g 2g, ..., r— g, 1g, r+1)g, ..., 2rg, ..., (B—Drg, ..., (d—1I)g}
{0, g, 2rg,..., (B—rg }
(all elements mod c)

From this observation, it is clear that the cardinality of S, d, is
equal to PBr. Thus, from the equation above, we know that B(rg)
= (Br)g = dg = 0 mod c. Hence, adding one more g onto the
last element of S in generated order, (d—1)g, brings us back to
the first element, 0. Therefore, S is cyclically generated by g, so
it must be a degenerate WF scale.

Case3: (Id)=h<I
It turns out that every Case 3 scale is also a Case 2 scale. We
will show this using a group theoretic argument.

By elementary number theory, we know that (I,d) = h implies
that (Uh, d/h) = 1. Thus, I/h is a generator of the group Z,,.
Therefore, I generates a subgroup of Z isomorphic to Z ,, and
|A| = d/h. This subgroup consists of the integers that are sub-
scripts of d in the set A = {d,, d, d,,, ...}.

Since h divides d, h also generates a subgroup of Z isomorphic
to Z,, . Because there is only one such subgroup, the subgroups
generated by I and h are one and the same. Therefore we can
write A as

A ={dy dy, dyy, - digg, -y -
Since I is a generator of the subgroup, there exists an integer k
such that h = kI (mod d). Thus,

<h> = <kI> = {ka (mod ¢)}.

So, <h> is a one-element spectrum where (h,d) = h. This
reduces Case 3 to Case 2, and we are left with a degenerate WF
scale. W
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One sees an immediate consequence of the proof of
Theorem 3.2 by observing that once the possibility of MP is
counted out, each of the three cases leads to a degenerate WF
scale.’ Thus, we have the following corollary.

Corollary 3.3. For every scale S that is both G and DE, the fol-
lowing four statements are equivalent:

(A) S is not MP.
(B) S has at least one one-element spectrum.
(C) S is degenerate WF.

(D) All of the interval spectrums of S consist of one ele-
ment.

PROOF: We will show that (A) = (B) = (C) = (D) = (A).
(A) = (B)

Since S is DE, all generic intervals in S come in one or two
sizes. If S is not MP, there must be at least one generic interval,
I, that does not come in two sizes. Hence, <I> must consist of
one element.

B) = (C)
S is G, DE, and has at least one one-element spectrum and

therefore is not MP. The proof of Theorem 3.2 shows that S
must be cyclically generated, and hence degenerate WF.

© =D

S, degenerate WF = S is cyclically generated. Take the gener-
ator to be g. Since the g-multiples mod ¢ constitute a complete
cycle through all the elements of S (under the appropriate trans-
position), we can find a k < d such thatd, = kg + d,. Ina WF
scale, the number of generating intervals that span a given dia-

.. . 6 — =
tonic interval is constant.® Therefore, d; , | 44 — d; = kg

3See Carey and Clampitt (1989), 200-2. Corollary 3.3 is consistent with
Carey and Clampitt’s assertion that MP is equivalent to non-degenerate WF.

OThis is true even for non-degenerate WF scales, where the “leftover” inter-
val from g(d — 1) to d; = 0 is counted as a “generating interval.” The proof of
this fact is somewhat technical and is omitted here for the sake of brevity.

mod c for all non-negative integers j < d. Hence, <1> = {kg
(mod c)}. From this, it is clear that <i> = {ikg (mod c)}, for
all positive integers i < d.

D) = (A)
Clear from the definition of MP. I

Category 3

Both of the Category 3 PF-sets are WF, but neither is MP
or ME. Hence, it will be sufficient to show that the WF prop-
erty always draws MP and/or ME along for the ride. One way
of approaching this problem is to employ a powerful obser-
vation about WF scales made in Carey and Clampitt (1989,
191). The authors show that one can always find a positive
integer k, k < d, such that the map f: S -~ Z, where jg - jk
(mod d) (j € Z,), is one-to-one and onto, and jg = df(jg) =
djk (mod 4y (Mod ¢). By relating the generated and scalar order-
ings of a WF scale via a well-behaved mapping, the authors
have set up the possibility of establishing representations of S
that are more mathematically pliable than the case-based
structures that were needed for the proof of Theorem 3.2.
However, it turns out that the application of such a mapping
is not necessary to achieve our result, as our labors in the
proof of Theorem 3.2 will pay off in the form of a simple
argument to dispose of Category 3 PF-sets.

Theorem 3.4. All scales S that are WF must be either ME,
MP, or both.

PROOF: Suppose S is WF. If S has MP, then we are done, so we
will assume that S does not have MP, and we will show that S
must have ME.

By the implicative diagram of Example 2, S must be both DE
and G. Since S is not MP, we can invoke Corollary 3.3, which
tells us immediately that S is degenerate WF and that all the
interval spectrums of S are made up of one element. Thus, S
must be ME. B



Note that it was the “over-determination” in the proof of
Theorem 3.2 that enabled us to achieve this result. We were only
required to show that S was WF in Theorem 3.2, but the proof
showed that S was degenerate WF, as long as S was not MP.

4. ENUMERATION

It is one thing to characterize a family of pcsets in terms of
a particular F-set and another to show how the family’s pcsets
may be exhaustively enumerated. Two of the thirteen F-sets
have finite and in fact very limited memberships—F-set 1 con-
tains the usual diatonic as its sole constituent, as demonstrated
in Theorem 2.1, and F-set 6 turns out to encompass only a finite
number of somewhat trivial classes that can be easily enumer-
ated. Each of the remaining eleven F-sets, however, has an infi-
nite number of members (given that we have not placed any
general restrictions on the size of the chromatic universe), mak-
ing the matter of exhaustive enumeration appear far less
tractable. We will begin with F-set 6 and then turn our attention
to the remaining eleven F-sets.

F-seT 6. Since F-set 6 is DE and G, but does not have MP, by
Corollary 3.3 it must be degenerate WF. Therefore, there exists a
positive integer k mod d, such that <1> = {k}. We can assume
without loss of generality that

S = {0, k, 2k, ..., (d— D)k},

where the entries do not need to be taken modulo ¢. Note that
¢ = kd (again an equality).

Note also that <I> = {Ik} for all I = 1, ..., d — L
Therefore, all chromatic intervals represented in S will occur d
times, except for the tritone (if ¢ is even and a tritone is repre-
sented in S), which will occur d/2 times in the interval vector.
Thus, in order for S to be DP, only one non-tritone interval can
be represented in the interval vector. In addition, to avoid dupli-
cate zero entries, only one interval can be absent in the vector.
Thus, the interval vector is made up of entries from the set J =
{0, d/2, d} where each element of J can appear at most once in
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the vector. Consequently, the vector has at most 3 entries,
which implies that ¢ < 8.

In fact, we can rule out some other chromatic cardinalities.
The only cyclically generated scales in ¢ = 5 and ¢ = 7 uni-
verses are (1) the full chromatic scales (g < ¢ = (g,c) = 1), and
(2) the single element scales (g = c). However, none of these
scales are DP: the former cases have duplicate d entries in their
interval vectors, and the latter have duplicate zeros.

Turning now to ¢ = 6, in order for a scale S in this universe
to be DP, its interval vector must consist of all three elements of
J. For d/2 to appear, S must contain a tritone. The only degener-
ate WF scales in ¢ = 6 with tritones are of the forms {0, 3}, and
{0, 1,2, 3,4, 5}. The interval vectors of these scales are [0 0 1]
and [6 6 3], respectively, and thus neither possibility is DP.

We have shown that examples of F-set 6, if they exist, must
be scales with ¢ < 5. Let us now investigate such scales. Note
that any S with a one element interval vector is trivially DP.
Therefore, any degenerate WF scale with ¢ = 3 is necessarily
an example of F-set 6. There are five such scalar types summa-
rized in the first five rows of Example 11.

The interval vectors of scales in ¢ = 4 have two entries, the
second of which represents the tritone. Therefore, any degener-
ate WF scale in ¢ = 4 with a tritone is DP and belongé to F-set
6. This yields the last two scale types on Example 11. Note that
g = 4, the only other possible cyclic generator, produces the

Example 11. A classification of all F-set 6 scales

c d g Interval vector Example
1 1 1 (0] {0},
2 1 2 [0] {0},
2 2 1 [ {0.1},
3 1 3 [0] {0},
3 3 lor2 (3] {0,1,2},
4 2 2 [01] {0,2},
4 4 lor3 [42] {0,1,2,3},
(* = tritone)
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set-class {0},, which has interval vector [0 O], and therefore
scales of this type are not DP. It should also be noted that the DT
scale in the ¢ = 4 universe requires d = 3, so neither of the two
¢ = 4 scales in Example 11 is DT.

We have shown that the seven scalar types listed in Example
11 exhaust all possibilities for F-set 6. While the examples are
somewhat trivial, they are significant for purposes of com-
pleteness of the characterization of feature sets. Note also that
the alternative characterization of DP given in Corollary 1.8
does not apply to scales that are this small. For example, the
stipulation thatd 5 ¢/2 or ¢/2 1 1 for even c leaves out the last
scalar type on Example 11: ¢ 5d 5 4.

F-sets of infinite cardinality. Since it is possible to devise an
algorithm to enumerate all pcsets in all chromatic universes, we
might merely adjoin an appropriate sorting function to such an
algorithm in order to enumerate the pcsets corresponding to
any or all F-sets. Unfortunately, the design of such a procedure
would confer little or no additional insight—although observ-
ing the sequence of its sorted output could be quite interesting,
as suggested by Example 9. For the eleven F-sets with infinite
memberships, however, we have developed algorithms that
do yield insights as to the proclivities of the defined families—
algorithms based primarily upon implicative relationships
among features.

The basic methodology underlying the development of the
algorithms was to begin with a “filtering” algorithm—essentially
a sieve designed to capture desired properties and to filter out
undesirable ones—based on the explicitly defined features of a
given F-set and on the implicative relations presented above, and
then to refine the filter, moving toward a more efficient “‘theorem-
based” algorithm. Implicative relations were invoked at an early
stage in the construction of these algorithms not only for reasons
of efficiency, but in many cases out of necessity as well, since
four of the properties, namely WF, ME, DE, and non-rounded
MP (step sizes are nonconsecutive integers), cannot be charac-
terized prescriptively in terms of restrictions on G-set parame-
ters. This means that we are able neither to specify nor to direct-

ly eliminate from consideration the properties WF, ME, DE, or
generic (non-rounded) MP. The ramifications of this non-com-
mensurability quickly become apparent, as we shall soon see,
when one attempts to differentiate between scales belonging to
F-sets 7 or 10, or to F-sets 8 or 13—feature sets differentiated
only by the presence or absence of generic MP, WF, and DE.
Fortunately, since the five commensurably defined properties are
situated, for the most part, near the top of the implicative net-
work shown in Example 2, the remaining four non-commensu-
rable features generally can be accounted for (positively or neg-
atively) on the basis of implicative relationships.

As a general model of the filtering-type algorithm, the role
played by implicative relationships among features, and the
types of refinements involved in moving from a filtering-type
algorithm toward a more theorem-based algorithm, consider
the two algorithms for F-set 4 given in Example 12. F-set 4
includes the generic triad or seventh chord as embedded in the
diatonic scale and also embraces all and only those sets with
Agmon’s (1991) efficient linear transformation property.
Example 12a presents the final version of the non-terminating
algorithm for this family of pcsets.” Given c=7, this particular
algorithm clearly does generate the triad and seventh chord. It
is by no means obvious, however, that it produces either all or
only those pcsets that map onto F-set 4. That it does so
becomes apparent if we examine the initial filtering form of the
algorithm, given here as Example 12b, and then trace the
refinements that led to the final version.

As shown in Example 3a, F-set 4 has all of the features
except DT and BZ. Based on our network of implicative rela-
tionships, then, it should be sufficient to define F-set 4 as hav-
ing MP, ME, and DP, but not DT or BZ. Or, since MP and ME
together imply rounded MP, we can simply say that F-set 4 has
rounded MP and DP, but not DT or BZ. Therefore, the algorithm
in Example 12b is constructed such that for each value of c, val-
ues of d and g conducive to the presence of DP and rounded MP

This algorithm is essentially contained in Agmon’s (1991, 29-30) theorem
pertaining to efficient sets of linear transformations.



Example 12. Algorithm for F-set 4

a. Final version
. Set ¢ = 3 (minimum value).
2. Setg =2.
Generate {Og, 1g, 2g, ..., ¢ — 3} [d = (c — 1)/2 in this case].
Generate {Og, 1g, 2g, ... ,¢ — 1} [d = (¢ + 1)/2 in this case].
3. Setc = ¢ + 2. Go back to step 2.

—

b. Earlier version
1. Set ¢ = 3 (minimum value).
2. Choose d such that:
For even values of ¢, d = ¢/2 or (¢/2) + 1.
For odd values of ¢,d = (¢ — 1)/2 or (¢ — 1)/2) + 1.
3. For each pair (c, d),

Find ¢’ such that c¢’ = —1 mod d.
If some such value of ¢’ exists, findd’ such thatd’ = (cc’ + 1)/d.
Setg =d'".

If ¢’ does not exist, discard the pair (c, d).
4. Discard all (¢, d, g) where c = 0mod 4 and ¢ = 2(d — 1).
5. Discard all (¢, d, g) where c = k(k + 1) andd = g = 2k + 1 for
some integer k (k > 2).
6. Generate {Og, 1g, 2g, ..., (d — 1)g} (all products taken mod c).
7. Setc = ¢ + 1. Go back to step 2.

are selected—in steps 2 and 3, respectively—then any combi-
nations of parameters that also result in DT or BZ are filtered
out in steps 4 and 5.

While this algorithm is correct, in that it produces all pcsets
in F-set 4 and no others, it is neither particularly efficient nor
informative in terms of the sort of output we might expect. An
important step toward both goals involves the exclusion of all
even values of c, since these values always yield combinations
of parameters that are filtered out in steps 3 or 4. Clearly step 4
excludes some pcsets with ¢ even—those where ¢ = 0 mod 4
and d = ¢/2 + 1. Somewhat less obvious are the cases where ¢
is even and d = ¢/2 or where c =2 mod 4 and d = ¢/2 + 1.
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Both are eliminated in step 3 since there does not exist a value
of ¢’ that will fulfill the given conditions if ¢ and d are not co-
prime. By restricting ¢ to odd values only, then, we can disre-
gard the “c is even” case in step 2, and—since an odd number
cannot be congruent to 0 mod 4, nor can it be factored as k(k +
1)—we can eliminate steps 4 and 5 outright. This improved
form of the algorithm can be further refined if we note that
when c is odd step 3 returns g = 2 for both possible values of
d. (We omit the proof here, but this can quite readily be shown
to be the case.) Thus we can simply specify “set g = 2” and
omit step 3 altogether. Our final revision to the algorithm
involves a reworking of step 6. By rewriting d in terms of c—
using both possible values of d given in step 2—and then sim-
plifying, we find that the last pc generated is either ¢ — 1 or
¢ — 3, depending upon the value of d chosen. This information
is incorporated into step 2 of the reformatted version of the
algorithm given in Example 12a.

Exhaustive algorithms for F-sets 2, 3, 5, 7, 8, 10, and 13 can
be constructed following similar procedures. Here we present
only the final versions of these algorithms, accompanied by
brief commentaries.

The non-terminating algorithm for F-set 2, which includes
all diatonic scales except for the usual one, is given in Example
13. F-set 2 scales have seven of the eight features, lacking only
BZ. On the basis of the implicative relationships, then, it is suf-
ficient to define F-set 2 scales as having DT but not BZ. The
algorithm is therefore constructed to generate all DT scales and
then to filter out any scales that also have BZ. Steps 1 and 3
select all values of ¢ such that c = 0 mod 4, while step 2 iden-
tifies the values of d and g that will produce a DT-set for each
c chosen. Then, since we have already shown that the usual dia-
tonic is the only scale that’s both DT and BZ, we need merely
eliminate the case “c = 12” (in step 3) for the algorithm to pro-
duce all and only those pcsets belonging to F-set 2.

The algorithm for F-set 3, given in Example 14, is similarly
straightforward. F-set 3 includes all non-diatonic BZ scales and
can be characterized most simply as having BZ but not DT or
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DP. Since BZ implies all other features except for DT and DP,
the strategy underlying the construction of this algorithm was
to generate all BZ scales and then to filter out any scales with
DT and/or DP. Since we have already demonstrated that a scale
cannot be both BZ and DP without also being DT, we need only
filter out scales that are BZ and DT. Again, we have already
shown that the usual diatonic is the only such scale, and it is
excluded here by setting k = 4 as the minimum case in step 1.

F-set 5 presents a more complicated situation, in that its
members possess only five of the eight properties, lacking in
particular DT, DP, and BZ—three of the four commensurably
defined properties located at the top of the implicative network.
F-set 5 scales do have rounded MP (step sizes are consecutive
integers), the fourth of these commensurable features; howev-
er, our definition of rounded MP in terms of G-set parameters
does not prescribe values of ¢ and d, but instead searches for
viable values of g for each pair (c,d) under consideration. As a
result, rather than simply prescribing desirable values of c, d,
and g and then filtering out DT- and/or BZ-sets, as in the algo-
rithms described above, here we must begin by considering all

Example 13. Algorithm for F-set 2

1. Let ¢ = 8 (minimum value).
2. Setd =g = (c/2) + 1.

Generate {Og, 1g, 2g, ..., (d — 1)g} (all products taken mod c).
3. Ifc =8, setc = 16; else set ¢ = ¢ + 4. Go back to step 2.

Example 14. Algorithm for F-set 3

1. Setk = 4 (minimum value).
2. Setc = kk + 1).
3. Setd =g =2k + 1.
Generate {0g, 1g, 2g, ..., (d — 1)g} (all products taken mod c).
4. Setk =k + 1. Go back to step 2.

values of c, then for each ¢ we must run all possible values of
d through a series of filtering steps (we know which values of
d we do not want—we do not want values that will result in DT
scales, for example), then for each surviving pair (c,d) we can
select a value of g that will guarantee a rounded MP-set. More
specifically, steps 1 and 4 of the algorithm (given in Example
15) insure that all integer values of ¢ (c = 5) will be considered.
In step 2, appropriate values of d are selected by running all
possible values of d through a series of filtering steps: the
exclusion of d = 1 and of all values of d not co-prime with ¢
eliminates values that produce (c,d) pairs that prove to be non-
viable in step 3 (¢’ values do not exist for these pairs); values
of d resulting in DP scales are filtered out in the steps “For odd
values of ¢, d # (¢ — 1)/2 or ((c — 1)/2) + 1” and “For even
values of ¢, d # (c/2) + 1” (here the case “d # ¢/2” has already
been excluded by the restriction (c,d) = 1); values of d pro-
ducing DT scales are also excluded by the requirement that
“For even values of ¢, d # (c/2) + 1”; and values of d resulting
in BZ scales are filtered out by the restriction “For even values

Example 15. Algorithm for F-set 5

1. Set ¢ = 5 (minimum value).
2. Find all values of d (d = ¢) such that:
d>1.
(cd) = 1.
For odd values of c,
d#(c— D2or((c— 1)/2) + 1.
For even values of c,
d # (c¢/2) + 1, and
if ¢ = k(k + 1) for some integer k (k > 2), thend # 2k + 1.
3. For each value of d,
Find ¢’ such thatcc’ = — 1 mod d (0 < ¢’ < d), thenset g =
(cc’ + 1)d.
Generate {Og, 1g, 2g, ..., (d — 1)g}(all products taken mod c).
4. Setc = ¢ + 1. Go back to step 2.



of ¢, if ¢ = k(k + 1) for some integer k (k > 2), then d #
2k + 1.” For each remaining (c,d) pair, step 3 then selects a
value of g resulting in a rounded MP scale.

As noted earlier, the lack of commensurable definitions for
four of the eight features under consideration also affects the
construction of algorithms for F-sets 7, 8, 10, and 13. Non-ter-
minating algorithms capable of generating all pcsets belonging
to F-sets 7 or 10 or to F-sets 8 or 13 can readily be produced
following the same general methodology invoked above.
Mapping each of these pcsets onto the single appropriate F-set
would appear to be far more complicated, however, since F-sets
7 and 10, as well as F-sets 8 and 13, are differentiated only by
the presence or absence of generic MP, WF, and DE—proper-
ties not defined prescriptively in terms of restrictions on G-set
parameters. Fortunately, WF can be characterized in terms of
the continued fraction approximations of the rational number
“g/c,” as described in Carey and Clampitt (1989), providing us
with a mechanism for sorting pcsets within each pair of F-sets.

Consider the case of F-sets 7 and 10, for example. F-set 10,
which includes all deep scales with the generic step appearing
in three sizes, is characterized by G and DP only, while F-set 7,
which includes all deep scales with all generic intervals appear-
ing in two non-consecutive sizes, has G, DP, MP, WF, and DE.
The algorithm for these two F-sets, given in Example 16, is
constructed so as to first generate all pcsets belonging to the
union of the F-sets, and then to sort these pcsets into the appro-
priate F-sets. For each value of c, step 2 produces those values
of d required for deep scales, then for each resulting (c,d) pair,
step 3 selects all values of g guaranteeing DP (in step 3.i) and
eliminating rounded MP (3.ii) and DT (3.iii). Steps 4 and 5 then
sort the G-set triples between the two F-sets. If g = *1 mod c,
the scale represented by the triple (c,d,g) belongs to F-set 7. For
all other values of g, “g/c”” must be converted into a continued
fraction and its convergents and semi-convergent must be
found. If the value d appears in the denominator of any of these
fractions, the scale represented by the triple (c,d,g) is WF and
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Example 16. Algorithm for F-sets 7 and 10

1. Set ¢ = 7 (minimum value).
2. Find all values of d such that:
for odd values of ¢, d = (¢ — 1)/2 or ((c — 1)/2) + 1.
for even values of ¢, d = ¢/2 or (¢/2) + 1.
3. For each pair (c, d), find all values of g such that:
i) cg=1
(ii) if there exists some value ¢’ (0 < ¢’ < d) such that c¢’ =
—1 mod d, then g # *((cc’ + 1)/d) mod ¢, and
(iii) if c = O mod 4 and d=(c/2) + 1,theng # = ((c/2) + 1)
mod c.
4. All scales represented by triples (c, d, g) with g = = 1 mod ¢
belong to F-set 7.
5. For each remaining triple (c, d, g):
Convert the rational number “g/c” into a continued fraction,
then find all convergents and semiconvergents.
If the value assigned to d appears in the denominator of any of
these fractions, the scale represented by the triple (c, d, g)
belongs to F-set 7.
If the value assigned to d does not appear in the denominator of
any of these fractions, the scale represented by the triple
(c, d, g) belongs to F-set 10.
6. Setc = ¢ + 1. Go back to step 2.

therefore belongs to F-set 7; otherwise, the triple is assigned to
F-set 10. The algorithm for F-sets 8 and 13, given in Example
17, is structured in much the same way. We leave the examina-
tion of its specifics to the reader.

While a more intuitive approach was used to construct the
algorithms for F-sets 9, 11, and 12, these algorithms also yield
insights as to the idiosyncrasies of the defined families of
pesets, and point toward interesting relationships among
the various properties discussed in this paper. These families
include those pcsets most often discussed under the rubric
of “interval cycles”~—namely transpositional cycles and
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Example 17. Algorithm for F-sets 8 and 13

I. Set ¢ = 6 (minimum value).
2. Find all values of d such that:
Hl1<d<(c-1),and
(ii) for even values of ¢, d # c/2 or (¢/2) + 1, or
for odd values of ¢, d # (¢ — 1)/2 or ((c — 1)/2) + 1.
3. For each pair (c, d), find all values of g such that:
(1) (c, g) = 1, and
(i1) if there exists some value ¢’ (0 < ¢’ < d)suchthatcc’ = — 1
mod d, then g # = ((cc’ + 1)/d) mod c.
4. For all triples (c, d, g) withg = = 1 mod c,
ifd = ¢ — 2, discard the triple;
for all remaining values of d, the scale represented by the triple
belongs to F-set 8.
5. For each remaining triple (c, d, g):
Convert the rational number “g/c” into a continued fraction,
then find all convergents and semiconvergents.
If the value assigned to d appears in the denominator of any of
these fractions, the scale represented by the triple (c, d,
g) belongs to F-set 8.
If the value assigned to d does not appear in the denominator of
any of these fractions, the scale represented by the triple
(c, d, g) belongs to F-set 13.
6. Setc = ¢ + 1. Go back to step 2.

cycle-combinations. That this is in fact the case can be intuited
as follows.

Consider first the case of a pcset that has ME but not MP. As
defined in Example 1, a maximally even set is one in which
each generic interval comes in either one size or two consecu-
tive integer sizes, and a Myhill property set is one in which
each generic interval comes in two specific sizes. Thus, if a
peset is ME but not MP, at least one generic interval must come
in one size only, implying an equal partitioning of the octave at

Example 18. Algorithm for F-set 9

1. Set ¢ = 2 (minimum value).
2. Find all values of d such thatd |c (1 <d =< ¢).
3. For each value of d:
Find the smallest value of g such that dg = 0 mod c.
Generate {Og, 1g, 2g, ..., (d — 1)g} (all products taken mod c).
4. Setc = c + 1. Go back to step 2.

some level—the level of the step, third, or etc. This leaves two
possible cases to consider: either all generic intervals come in
one size only, or at least one generic interval comes in one size
only and at least one comes in two consecutive integer sizes.
In the first case, if all generic intervals come in one size only,
the octave is partitioned at the level of the step. This, of course,
produces the basic transpositional cycles with g = c/d, which
correspond to F-set 9. The algorithm is given in Example 18.
In the second case, which corresponds to F-set 11, if at least
one generic interval appears in one size only and at least one
appears in two consecutive sizes, then the partitioning of the
octave must occur at a level higher than that of the step since
differentiated step sizes are necessary if any generic interval is
to appear in more than one size. Furthermore, each partition
must include an identical maximally even set with two step
sizes—that is, a rounded MP-set—otherwise some generic
interval will appear in three sizes. The characterization of these
pesets as being composed of smaller rounded MP sets disposed
at equal intervals is consistent with our earlier discussion of an
expanded understanding of “generated sets” and is reflected in
the structure of the algorithm for F-set 11, given in Example 19.
F-set 12 can similarly be shown to include only those pcsets
that are symmetrical under non-trivial transposition and under
inversion, but that are not ME. If a set is DE but not ME, then
either its generic intervals all come in two non-consecutive
integer sizes or they include at least one interval appearing in



Example 19. Algorithm for F-set 11

Let a, b = step sizes; #a, #b = multiplicities of a, b (#a = #b) within

each segment; ¢’ = chromatic size of segment; d’ = diatonic size of

segment; n = number of segments.

1. Set ¢ = 6 (minimum value).

2. Find all values of d (1 < d < ¢) such that (c, d) # 1.

3. For each value of d, find the common factor(s) n (n > 1) of ¢, d.

4. For each n, find ¢’ and d’ such that ¢’ = c¢/nand d’ = d/n.

5. Foreachd’, set#b = d' — 1, and set #a = 1.

6. For each #b, find all solutions of a+(#b - b) = ¢’ where aand b
are consecutive integers.

7. For each solution (a,b) found in Step 6, choose an ordering of step
sizes a and b with multiplicities 1 and #b, respectively.

8. To produce the whole scale, replicate this segment n times at trans-
position levels 0, ¢’, 2¢’, 3¢’, ..., (n — 1)¢".

9. Setc = ¢ + 1. Go back to step 2.

one size only and at least one appearing in two non-consecutive
sizes. The restriction “not MP” rules out the former possibility,
leaving but one case: at least one interval must come in one size
only and at least one must come in two non-consecutive sizes.
As noted in conjunction with F-set 11, this implies an equal
partitioning of the octave at a level higher than that of the step,
with each partition in this case containing an identical non-
rounded MP-set. Thus, the constituent pcsets of F-set 12 can
also be characterized as “generated sets” in the expanded sense
described above. The extent of the similarity between F-sets 11
and 12 is evident in the minor alterations needed to change the
F-set 11 algorithm into that of F-set 12, as noted in Example 20.

F-sets 11 and 12 are differentiated, in fact, only by the actu-
al step sizes involved (consecutive integer sizes in F-set 11,
non-consecutive in F-set 12); their underlying structures,
viewed in terms of the patterns of distribution of two unspeci-
fied step sizes, are identical. Given any pcset from F-set 11, for
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Example 20. Algorithm for F-set 12

Make the following changes to the F-set 11 algorithm:
1. Set ¢ = 8 (minimum value).
6. Specify “non-consecutive” rather than “consecutive” integers.

example, we can produce a pcset (in fact infinitely many pcsets
in arbitrarily large universes) belonging to F-set 12 by increas-
ing or decreasing one (or both) of the step-interval sizes so that
they are not consecutive integers. This relationship, which we
call “inflation” or ‘“‘deflation,” also obtains between F-sets 4
and 7 and between F-sets 5 and 8.

The inflation/deflation relationship is particularly interest-
ing as it applies to the categorization of embedded scales. The
“French Sixth,” for example, is a member of F-set 12 when
embedded in the usual twelve-note chromatic universe ({0, 2,
6, 8},,, with <1> = {2, 4}) but belongs to F-set 11 when
viewed in terms of a mod 6 universe ({0, 1, 3, 4}, with
<I1>={1,2)}).

5. FURTHER REMARKS ON FEATURES

Complementation. In our characterization of the various fea-
tures and their instantiations, we have yet to address the matter
of complementation or, more specifically, to note which fea-
tures hold for complements of sets. It might seem that, if a
given set is generated, its complement is generated as well, by
continued iteration of the same generating interval. For exam-
ple, the usual diatonic and its pentatonic complement are both
generated by interval 7 (or 5). However, this is the case only
when the generating interval runs through all the pcs, which is
to say when its size is co-prime to that of the universe. Four
features always hold under complementation, namely MP, WF,
ME, and DP. Of the remaining three features—DE, DT, and
BZ—DE does not necessarily (but may) hold for complements,
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while DT and BZ never do. (That the latter assertion is true can
readily be seen by examining the relationship between ¢ and d
in the definitions of these properties as given in Example 1.)
Finally, it is curious that, while complementation preserves
ME, it does not necessarily preserve DE. For example, the
complement of the DE set {0, 1, 6, 7} is also DE, while the
complement of {0, 2, 6, 8}, the “French Sixth,” is not. Note that
neither of these sets is ME.

Cohn’s property. We now return briefly to Cohn’s property,
that remarkable feature shared by the usual diatonic, the con-
sonant triads, and infinitely many sets in spaces of other than
12 pcs—the feature that enables formation of cycles of pcsets
of the same set-class by means of a single minimal motion of
one pc. In 12-pc space, these maximally smooth cycles, as Cohn
calls them, are exemplified, non-trivially, by the circle-of-fifths
arrangement of the twelve diatonic scales, and by the four
cycles of six consonant triads each (for example, C major, C
minor, Ab major, Ab minor, E major, E minor, then back to C
major), and by cycles of the complements of those sets. In 7-
space, they are exemplified by a circle-of-3ds progression of
the triads. How does Cohn’s property relate to our classifica-
tion? We conjecture that all pcsets in F-sets 1-5 have Cohn’s
property. These F-sets comprise precisely all the sets with
rounded MP. We conjecture further that these are the only
pesets within our classification that have Cohn’s property.
Merging these two statements, we suspect that, in the presence
of G, rounded MP and Cohn’s property are mutually implica-
tive. (As far as we know, these conjectures have not been
proved. If and when they are, it seems likely that the method of
proof will owe a debt to David Lewin’s (1996) work describing
the necessary structure of sets with Cohn’s property.) In sum-
mary, within the confines of our taxonomy—that is, within the
world of generated sets as we recognize them here—Cohn sets
are nicely circumscribed. There are, however, infinitely many
sets with maximally smooth cycles that are not generated sets
and therefore lie outside our classification.

Distributionally even sets. Before concluding, we offer fur-
ther remarks on the category we have called “distributionally
even,” beginning with an account of some of its more visible
antecedents. These extend back at least to Messiaen’s 1944 com-
positional treatise with its discussion of his “modes of limited
transposition” and range forward to Howard Hanson’s 1960
study devoted in small part to pcsets based on dual interval
cycles. More recently, a line may be traced, more or less direct-
ly from the 1977-78 work of Starr and Morris, through Morris’s
1987 treatise, through Cohn’s 1991 paper, to our DE category.
Along the way, one finds the 1982 paper of Lewin, whose gen-
eralized Riemann Systems are necessarily conceivable as dual
interval cycles, possibly incomplete, and the 1995 characteriza-
tion scheme of Anatol Vieru, based on “knots” of incomplete
interval cycles. Two recent contributions relating to the DE prop-
erty are Stephen Soderberg’s 1995 study of Z-sets and Jay
Rahn’s 1996 paper in which DE-sets are studied in the rhythmic
domain. In resonance with Richmond Browne’s 1981 discussion
of the unique interval contexts for each pc in the usual diatonic,
Rahn characterizes pcsets such as the octatonic scale as sets
where one may “look out” from more than one pc (but not all)
and see the same “panorama.” This metaphor perfectly describes
the subcategory of our DE scales in which at least one generic
interval comes in one size and at least one comes in two sizes.

So there is an ample body of literature addressing Messiaen’s
modes, transpositionally redundant sets in general, and the
broad notion of the dual or multiple interval cycle. Our contri-
bution along these lines is to define the category “distribution-
ally even” in terms of generic interval sizes, and to open the cat-
egory to cases where specific interval sizes are not rational parts
of the octave. In so doing, we define a category that subsumes
all the others in our classification except the deep scales and the
generated scales with no other features. Like the category max-
imally even, it catches the pentatonic, whole-tone, diatonic, and
octatonic sets; in addition, it includes all conjunctions of two
complete interval cycles based on the same generator and many



of more than two such cycles, thus embracing most of
Messiaen’s modes and, more significantly, tunings of all the
above that hold constant the distribution of relative interval
sizes, for example, the Pythagorean diatonic.

The great generality afforded by the category DE leads us to
suspect that further attempts to define categories in terms of
generic and specific intervals (perhaps involving cases with
more than two specific sizes for some generic sizes) may yield
interesting results, but we leave that for the future.

Conclusion. Our principal objective has been to unify the
contributions of many theorists who, motivated by a sense of
wonderment at the diatonic scale, its durability, adaptability,
and ubiquity, have taken account of its structure, and have gone
on to pose questions extending to various musical dimensions,
diverse musics, and the nature of musical systems, both extant
and imaginary. We hope that the present effort will encourage
and facilitate their continuing quest.

ABSTRACT

Recent studies in the theory of scales by Agmon, Balzano, Carey and
Clampitt, Clough and Douthett, Clough and Myerson, and Gamer have in
common the central role of the interval cycle. Based on scale features
defined in these studies, and an additional feature called distributional
evenness defined here, a taxonomy is proposed for pitch-class sets (pcsets)
the correspond to interval cycles or to certain conjunctions thereof.
Pairwise implicative relationships among the features are explored. Of
twenty sets of features that are consistent with these relationships, thirteen
are found to be instantiated by actual pcsets and seven others are shown to
be incapable of instantiation. Most instantiated feature-sets correspond to
infinite classes of pcsets which are shown to be enumerable; one such fea-
ture-set is found to be uniquely realized (up to transposition) in the usual
diatonic pcset.

Earlier versions of this paper, by Clough and Engebretsen, were presented
at conferences of the Society for Music Theory, New York, November 1995,
and the European Society for the Cognitive Sciences of Music, Uppsala,
Sweden, June 1997.
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