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From the 16th.to the 19th.century, organs and other keyboard 
instruments were tuned to some version of meantone temperament,. 
This tuning syst em was gradually replaced by various irregular varieties, 
as documented in Barbour's "Tuning and Temperament" , and finally yielded 
to the familiar 12-tone equal temperament. Recently , however, there 
has been a resurgence of interest in perforning musi c of this period 
in its authentic intonation. For this reason, one might profitably 
r~xamine unequal or linear temperaments, not only for the performance 
of thts music, but more for the novel properties of these systems. 

Tunings of the meantone type are characterised by a unique size: 
of the fifth whose cycles, of course, do not common out evenly with 
the octav~.Depending upon the size chosen for t he fifth, certain other 
intervals may have their just values. In the case of meantone itself, 
the major third is exactly 5/4, though the minor third and fifth are 
quite far from their true measures. The Third-Comma system of Salinas 
has true minor thirds and major sixths, while the 1/5-Comma tuning has 
pure maj or sevenths. These and other historically proposed temperaments 
are dealt with at length by Barbour , In addition to offering more 
harmonious triads than 12-tone equal temperament, other intervals 
such a s 7/4, 7/5 and 7/6 are also approximated in some chords. The 
greatest disadvantage of unequal temperaments is the restriction on 
free modula tion, or extended chromatic writing, although this point 
overstressed, During the period of their employment, these systems 
were prized by many composers precisely because they did distinguish 
between keys, giving to modulati on some of the effect of a change of 
mode, In any case, ther e are equal temperaments closely corresponding 
to each of the meantone varieties. 

In contrast to the meantone type of temperament where the fifths 
are less than those of 12-tone equal, there are also positive systems 
with fifths larger than 700 cents, The prototype of these systems is 
the Pythagorean with its just fi fths . Positive systems can also be 
used to approx i mate other intervals, although the chain is sometimes 
rather long . For examole , meantone or negative systems form their 
major third by going four fifths up from the tonic and suqracting 
two octaves . Positive systems form their major third (C-Fb) by going 
eight fifths down and five octaves up, Similarly , the harmonic seventh 
(7/4) 1s found 1n negative systems by ten ascending f1fthsa the positive 
tquire fourteen descending steps, Doubly positive systems also exist 
which are similar to the 22-tone equal temperament. In these systems, 
rather unfamili a r relationships are encountered, 

One can appreciate that the historical linear temperaments were 
designed to express triadic relations in a limited number of tones. 
The~ furthermore,had the defect that the errors tended to be concentrated 
in the fifth or third, and the intona tion of the higher prime intervals 
was i gnored , An attempt has been made to correct these deficiencies 
by designing new linear temperaments, Clearly, we are no longer limited 
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conceptually to tertian intervals, nor really to twelve keys per 
octave anymore. The development of electronic pitch control and 
microtonal keyboards makes the positive systems both attractive and 
feasible. New negative systems have been found which balance the 
tertian intervals more equitably and which also rectify the more 
importanft higher prime relations. These likewise are conceived in. 
a microtonal context, though many would be excellent for traditional 
harpsichords and organs. 

As a first step in this investigation, a F~RTRAN program was 
written to calculate the number of fifths of different sizes which 
generated certain just intervals. The size of the fifth was allowed 
to range from 690 to 720 cents, and the length of the cycle could 
go as high as fifty-three steps up or down. It was found that cycles 
of reasonable length were defined by fifths of three sizes-- a meantone­
like negative fifth, a positive fifth near the just value, and with 
more searching, a fifth near to the 22-tone tempered value, These 
values, for the more important intervals,have been tabulated ln Table 1. 
Also included in this table are the values for certain historical 
systems and some closely related equal temperaments . 

Once the size of the fifth and the length of the cycle defining 
a given interval is known, it becomes a simple task to write functions ­
describing the errors in these intervals in terms of the size of the 
fifth,, In the 1/J-Comma system, for example, the errors o~he major 
third and fifth are equal, If we call the fifth F (701.9550+) and 
the major third T ()86,3137+), the corresponding erro~1n any negative 
system can be wrttten F-X and T-4X+2 ~ . where ~ is the octave(1200) and X 
the new -fifth. Thus the 1/J-Comma system is defined by F-X=T-4X+2¢. 
temperament, By negating one ot' the functions, the equal and opposite 
system is obtained. This system is the 1/5-Comma system where the 
15/8 has its just value. In Table 1., these two temperaments are 
written "3=5w and ''Jop5"· This principle is extended to other intervals 
and the corresponding generating and error functions are given in Table 2. 
Positive and doubly positive systems are derived in the same manner. 

There are innumerable ways in which the error functions can be 
combined, Various means, arithmetic, harmonic, geometric, to name the 
simplest, may be used, The technique called the Method of Least Squares 
was the one used most in this investigation. This technique finds 
tunings in which the total (error)Z of a given set of intervals is 
minimised. In the cases examined here, the solutions are weighted 
1n favor of intervals with the longest chains of fifths. In practice 
this means that the seventh is favored over the third, and the eleventh 
over the seventh, but since large errors make the most contribution 
to the squared terms, the errors,in fact.are somewhat equalised. 
Intuitively, then, this would seem to be a good method . Since this 
technique does not distinguish between sharp and flat inter~als, a 
similar experiment was tried using the absolute values· of the errors, 
A simple one-dimensional search program was written and run, but no 
new tunings emerged--only the fifths corresponding to the intervals 
with the longest chai~ 

The application of the Method of Least Squares to this type 
ot problem requires some explanation. Let us express the total 
error for a set of intervals approximated by a linear temperament 
by the following equatio~~ using for example the fifth and major third 
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Total Error = (F-X) + (T-4X+2¢j, where ¢ is the octave or 1200 cents. 

Total (Error)2
c (F-x)2 + {T-4X+2¢) 2 

Now the expression for the total squared error must be differentiated 
with respect to the desired fifth, X. 

d(Total (Error) 2 ) = -2(F-X) -8(T-4X+2¢) 
dX 

The derivative is now set equal to zero and the equation solved for x. 
--2(F-X) -8(T-4X+2¢) = 0 

X .. = 696 •. 8947 cents. 

For comparison, the meantone fifth is 696.5714 cents, admitedly very 
close. The major third in this tuning, LSQJ,), is 387.)788 cents, . 
compared to the just value of 386.3137. The squared error for both 
the fifth and the major third is 27,2072 for the new tuning and 28.91 
for meantone. 

Other functions may be obtained from Table 2 and the process 
applied to discover tunings of this type. A number of these have 
been calculated and listed in Ta ble 3., in each of the categories, 
negative, positive and doubly positive. Space, unfortunately, does 
not permit a deta iled error analysis of each entry. a owever, it is 
not difficult to do given a table of just intervals and the generating 
functions. 

Although much of this article may seem to be an exfercise in 
speculative music theory, the new tunings presented here do appear 
to have intriguing properties. The subtle tunings can be realised 
with the aid of electronic pitch standards, and I have no doubt that 
a tuning order can worked out for many of them. . It might prove inter­
esting to temper the temperament along the line of Kuhnle's or Barbour's 
regularly varied schemes,, remembering that intervals of 7 and other 
high primes can be obtained from cha ins of altered fifths. Perhaps 
the major importance of this work lies in the support certain of the 
new tunings give to the 31 and 41 tone temperaments. The 19, 31, 43, 
and SO tone systems have long been known as ide~l forms of certain~ 

negative systems, much as the 53-tone system has been the idealised 
form of Pythagore~n. Although Wilson has developed just constructions 
for 22 and 41, this 1s the first time that the corresponding linear 
temperaments have been described. Thus the major harmonic equal tem­
peraments may be referred to both just and linear constructions, both 
of which imply different musical usages--the just being the static and 
the linear the dynamic aspect of the harmonic derivation. 

Rahway, New Jersey 
October, 1974 



TABLE 1. 

LINEAR AND EQUAL TEMPERAMENTS 

Negative Systems 

19-Tone Equal 
31-Tone Equal 
43-Tone Equal 
50-Tone Equal 
55-Tone Equal 

Fifths 1n Cents 

Meantone, t -Comma, 5/4 Just 
1/J-Comma , 3=5, 6/5 Just* 
2/7-Comma , 25/24 Just * 
1/5-Comma, Jop5, 15/8 Just* 
1/6-Comma, 45/32 Just* 
7/4 NEG, 7/4 Just 
11/8 NEG, 11/8 Just 
13/8 NEG, 13/8 Just 
3=7, 7/6 Just 
Jop7, 21/16 Just 
5=7, 715 Just 
5op7, 35/32 Just 
11/9-16up, 11/9 Just 

Positive Systems 

41-Tone Equal 
53-Tone Equal 
Pythagorean , J/2 Just 
Helmholtz, 5/4 Just 
3=5, 6/5 Just 
Jop5, 15/8 Just 
7/4 POS, 7/4 Just 
11/8 POS~ 11/8 Just 
13/8 POS, 13/8 Just 
3=7, 716 Just 
3op7, 21/16 Just 
5=7, 7/5 POS, 7/5 Just 
Sop?, 35/32 Just 
11=7, 11/7 Just 
19/16 POS., 19/16 Just 

Doubly Pos1t1ve Systems 

22-Tone Equal 
5/4-2POS, 5/4 Just 
7/4-2POS, 7/4 Just 
11up16, 11/8 Just 
11dn6, 11/8 Just 
13/8-2POS, 13/8 Just 
3=5, 6/5 Just 
3op5, 15/8 Just 
3=7, . 7/6 Just 
3op7, 21/16 Just 
5=7, 715 Just 
5op7, 35/32 ~ust 
11=9, 11/9 Just 
9=7, 9/7 Just 

694.7368 
696.7742 
696.6744 
696.0000 
698 .. 1818 
696.5784 
694.7862 
695.8103 
697.6537 
698.)706 
696.8826 
697.2954 
696.0352 
696.3190 
697.3437 
697.0854 
696.7957 
696 .. 7130 

702.4390 
701.8868 
701.9550 
701.-7108 
701.7379 
701.6759 
702.2267 
702.7046 
702.8320 
702.2086 
702.2476 
702 •. 9146 
702.0391 
701.0942 
700.8290 

709o0909 
709 o5904 
715.5870 
709.4573 
708.1137 
710.8098 
710.5448 
708.8269 
711 •. 0430 
729.2191 
710.6807 
707.8771 
710.5291 
708.7710 

*See Barbour, "Tuning and Temperament", for sources. 
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TABLE 2. 

FUNCTIONS 

INTERVALS GENERATING FUNCTIONS ERROR FUNCTIONS 

N"egattve Systems 

Fifth X . F-X * 
Major Third (5/4) i4X-2¢ T.-4X.+2¢ 

Harmonic Seventh (7/4) 10X-5¢ S-10X+5¢ 

Harmonic Fourth (11/8) 18X-10¢. E-18X.+lO¢ 

Harmonic Sixth (1.3/8)_ 1.5X-8¢ Th-lSX-+8¢ 

Positive S~stems 

Fifth X. F.-X 

Major Third (5/4) 5¢-8X. T+8X-5¢ 

Harmonic Seventh (7/4) 9¢-14X S+14X~9¢ 

Harmonic Fourth (11/8) 11¢-18X. E+18X-11¢ 

Harmonic Sixth ( 1)/8) 1J¢-21X. Th+21X!"'1.3¢ 

DoublY; Positive Systems 

Fifth X F-X 

Major Third (5/4) 9X:.~5¢ T-9X+¢ 

Harmonic Seventh (7/4) 2¢-2X. S+2X-2¢ 

Harmonic Fourth (11/8) 4¢-6X E+6X-4¢ 

Harmonic Fourth (11/8) 16X-9¢ E-16X+9¢ 

Harmonic Sixth (13/8) 1 JX"!"7¢.. Th-13X+7¢ 

NeQtr.al Third (11/9) 14X-8¢ M"-14X+8¢ 

Supramajor .Third (9/7) 4X-2¢ St-4X+2¢ 

* The symbols in these expressions stand for the following just 
intervals in centsa 

F = 701.955001 T = 386.313714 S = 968,825906 
E = 551.317942 Th= 840 •. 527662 N = 347,.407941 

St=435.084095 ¢ = 1200,000000, 



Negative Systems 

LSQ 3,5 
LSQ 3,7 
LSQ 5, 7 
LSQ 3,5,7 
LSQ 3,5,7,11 
LSQ 3,5,7,11,1.3 
LSQ 5,7,11 

Positive Systems 

LSQ 3,5 
LSQ 3,7 
LSQ 5,7 
LSQ 3,5,7 
LSQ 3,5,7,11 
LSQ .3,5,7,11,1.3 

TABLE 3. 

LEAST SQUARES SOLUTIONS 

Doubly Positive Sys tems 

LSQ .3,5 
LSQ .3,7 
LSQ 5e-7 
LSQ .3,5,7 
LSQ 3,5,7,11 (6X) 
LSQ 3,5,7,11 {16X) 
LSQ .3,5,7,11,13 (6X) 
LSQ 3,5,7,11,1.3 (1 6~ 

Fifths i n Cents 

701.7145 
702 . 225.3 
702 •. 0997 
702 •. 0992 
702.4345 
702. 605.3 

709.497.3 
712.8606 
709.8726 
709.7805. 
709.2887 * 
709.-5.386 * 
710.1721 * 
709.9590 * 

* See Table 2. for the two alternate functions of 11/8. 
The notation, (6X) or {16X), refers to the length of 
the chain of fifths which defines thi s interval. 
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