SOME NEW
LINEAR TEMPERAMENTS
...John Chalmers, Oct. 1974.

From the 16 th. to the $19 t h$. century, organs and other keyboard instruments were tuned to some version of meantone temperament. This tuning system was gradually replaced by various irregular varieties, as documented in Barbour's "Tuning and Temperament", and finally yielded to the familiar 12 -tone equal temperament. Recently, however, there has been a resurgence of interest in performing music of this period in its authentic intonation. For this reason, one might profitably rexamine unequal or linear temperaments, not only for the performance of this music, but more for the novel properties of these systems.

Tunings of the meantone type are characterised by a unique size of the fifth whose cycles, of course, do not common out evenly with the octave. Depending upon the size chosen for the fifth, certain other intervals may have their just values. In the case of meantone itself, the major third is exactly $5 / 4$, though the minor third and fifth are quite far from their true measures. The Third-Comma system of Salinas has true minor thirds and major sixths, while the $1 / 5$-Comma tuning has pure major sevenths. These and other historically proposed temperaments are dealt with at length by Barbour. In addition to offering more harmonious triads than 12 -tone equal temperament, other intervals such as $7 / 4,7 / 5$ and $7 / 6$ are also approximated in some chords. The greatest disadvantage of unequal temperaments is the restriction on free modulation, or extended chromatic writing, although this point overstressed. During the period of their employment, these systems were prized by many composers precisely because they did distinguish between keys, giving to modulation some of the effect of a change of mode. In any case, there are equal temperaments closely corresponding to each of the meantone varieties.

In contrast to the meantone type of temperament where the fifths are less than those of 12 -tone equal, there are also positive systems with fifths larger than 700 cents. The prototype of these systems is the Pythagorean with its just fifths. Positive systems can also be used to approximate other intervals, although the chain is sometimes rather long. For example, meantone or negative systems form their major third by going four fifths up from the tonic and subracting two octaves. Positive systems form their major third ( $C-F i b$ ) by going elght fifths down and five octaves up. Similarly, the harmonic seventh (7/4) is found in negative systems by ten ascending fifths; the positive ratire fourteen descending steps. Doubly positive systems also exist which are similar to the 22-tone equal temperament. In these systems, rather unfamiliar relationships are encountered.

One can appreciate that the historical linear temperaments were designed to express triadic relations in a limited number of tones. They, furthermore, had the defect that the errors tended to be concentrated in the fifth or third, and the intonation of the higher prime intervals was ignored. An attempt has been made to correct these deficiencies by designing new linear temperaments. Clearly, we are no longer limited
conceptually to tertian intervals, nor really to twelve keys per octave anymore. The development of electronic pitch control and microtonal keyboards makes the positive systems both attractive and feasible. New negative systems have been found which balance the tertion intervals more equitably and which also rectify the more important higher prime relations. These likewise are conceived in a microtonal context, though many would be excellent for traditional harpsichords and organs.

As a first step in this investigation, a FøRTRAN program was written to calculate the number of fifths of different sizes which generated certain just intervals. The size of the fifth was allowed to range from 690 to 720 cents, and the length of the cycle could go as high as fifty-three steps up or down. It was found that cycles of reasonable length were defined by fifths of three sizes-a a meantonelike negative iffth, a positive fifth near the just value, and with more searching, a fifth near to the 22 -tone tempered value. These values, for the more important intervals, have been tabulated in Table 1. Also included in this table are the values for certain historical systems and some closely related equal temperaments.

Once the size of the fifth and the length of the cycle defining a given interval is known, it becomes a simple task to write functions describing the errors in these intervals in terms of the size of the fifth. In the $1 / 3$-Comma system, for example, the errors oisthe major third and fifth are equal. If we call the fifth $F(701.9550+)$ and the major third $T(386.3137+)$, the corresponding errors in any negative system can be written $F-X$ and $T-4 X+2 \varnothing$, where $\varnothing$ is the octave (1200) and $X$ the new fifth. Thus the $1 / 3$-Comma system is defined by $F-X=T-4 X+2 \emptyset$. temperament. By negating one of the functions, the equal and opposite system is obtained. This system is the $1 / 5$-Comma system where the $15 / 8$ has its just value. In Table $1 .$. these two temperaments are written " $3=5^{\prime \prime}$ and " $30 \mathrm{p} 5^{\prime \prime}$. This principle $1 s$ extended to other intervals and the corresponding generating and error functions are given in Table 2. Positive and doubly positive systems are derived in the same manner.

There are innumerable ways in which the error functions can be combined. Various means, arithmetic, harmonic, geometric, to name the simplest, may be used. The technique called the Method of Least Squares was the one used most in this investigation. This technique finds tunings in which the total (error) ${ }^{2}$ of a given set of intervals is minimised. In the cases examined here, the solutions are weighted in favor of intervals with the longest chains of fifths. In practice this means that the seventh is favored over the third, and the eleventh over the seventh, but since large errors make the most contribution to the squared terms, the errors, in fact, are somewhat equalised. Intuitively, then, this would seem to be a good method. Since this technique does not distinguish between sharp and flat interfals, a similar experiment was tried using the absolute values of the errors. A simple one-dimensional search program was written and run, but no new tunings emerged-anly the fifths corresponding to the intervals with the longest chains

The application of the Method of Least Squares to this type of problem requires some explanation. Let us express the total error for a set of intervals approximated by a linear temperament by the following equations, using, for example, the fifth and major third of a negative system.

Total Error $=(F-X)+(T-4 X+2 \not D)$, where $\phi$ is the octave or 1200 cents. Total (Error) ${ }^{2}=(\mathrm{F}-\mathrm{X})^{2}+(\mathrm{T}-4 \mathrm{X}+2 \emptyset)^{2}$

Now the expression for the total squared error must be differentiated with respect to the desired fifth, $X$.

$$
\frac{d\left(\text { Total }(\text { Error })^{2}\right)}{d X}=-2(F-X)-8(T-4 X+2 \not \varnothing)
$$

The derivative is now set equal to zero and the equation solved for $X$.

$$
\begin{aligned}
-2(F-X) & -8(T-4 X+2 \phi)=0 \\
X & =696.8947 \text { cents. }
\end{aligned}
$$

For comparison, the meantone fifth is 696.5714 cents, admitedly very close. The major third in this tuning, LSQ3.5, is 387.5788 cents. compared to the just value of 386.3137 . The squared error for both the fifth and the major third is 27.2072 for the new tuning and 28.91 for meantone.

Other functions may be obtained from wable 2 and the process applied to discover tunings of this type. A number of these have been calculated and listed in Table 3., in each of the categories, negative, positive and doubly positive. Space, unfortunately, does not permit a detailed error analysis of each entry. Eowever, it is not difficult to do given a table of just intervals and the generating functions.

Although much of this article may seem to be an excercise in speculative music theory, the new tunings presented here do appear to have intriguing properties. The subtle tunings can be realised. with the aid of electronic pitch standards, and I have no doubt that a tuning order can worked out for many of them. It might prove interesting to temper the temperament along the line of Kuhnle's or Barbour's regularly varied schemes, remembering that intervals of 7 and other high primes can be obtained from chains of altered fifths. Perhaps the major importance of this work lies in the support certain of the new tunings give to the 31 and 41 tone temperaments. The 19, 31, 43, and 50 tone systems have long been known as 1 deal forms of certain: negative systems, much as the 53-tone system has been the idealised form of Pythagorean. Although wilson has developed just constructions for 22 and 41 , this is the first time that the corresponding linear temperaments have been described. Thus the major harmonic equal temperaments may be referred to both just and innear constructions, both of which imply different musical usages--the just being the static and the linear the dynamic aspect of the harmonic derivation.

TABLE 1.

LINEAR AND EQUAL TEMPERAMENTS

Negative Systems


Positive Systems

| 41-Tone Equal | 702.4390 |
| :--- | :--- |
| 53-Tone Equal | 701.8868 |
| Pythagorean, 3/2 Just | 701.9550 |
| Helmholtz, 5/4 Just | 701.7108 |
| $3=5,6 / 5$ Just | 701.7379 |
| $30 p 5,15 / 8$ Just | 701.6759 |
| $7 / 4$ POS, 7/4 Just | 702.2267 |
| $11 / 8$ POS, 11/8 Just | 702.7046 |
| $13 / 8$ POS, 13/8 Just | 702.8320 |
| $3=7,7 / 6$ Just | 702.2086 |
| $30 p 7,21 / 16$ Just | 702.2476 |
| $5=7,7 / 5$ POS, 7/5 Just | 702.9146 |
| $50 p 7,35 / 32$ Just | 702.0391 |
| $11=7,11 / 7$ Just | 701.0942 |
| $19 / 16$ POS, 19/16 Just | 700.8290 |

Doubly Positive Systems

| $22-T o n e ~ E q u a l ~$ | 709.0909 |
| :--- | :--- |
| $5 / 4-2 P O S, 5 / 4$ Just | 709.5904 |
| $7 / 4-2$ POS, $7 / 4$ Just | 715.5870 |
| 11 up16, $11 / 8$ Just | 709.4573 |
| 11 dn6, 11/8 Just Just | 708.1137 |
| $13 / 8-2 P 0 S, 13 / 8$ Just | 710.8098 |
| $3=5,6 / 5$ Just | 710.5448 |
| $30 p 5,15 / 8$ Just | 708.8269 |
| $3=7,7 / 6$ Just | 711.0430 |
| $30 p 7,21 / 16$ Just | 729.2191 |
| $5=7,7 / 5$ Just | 710.6807 |
| $50 p 7,35 / 32$ ust | 707.8771 |
| $11=9,11 / 9$ Just | 710.5291 |
| $9=7.9 / 7$ Just | 708.7710 |

22-Tone Equal
5/4-2pOS 14 Just
11up16, 11/8 Just
11dn6, 11/8 Just
13/8-2POS, 13/8 Just
$3=5,6 / 5$ Just
3op5, 15/8 Just
3=7. 7/6 Just
3op7, 21/16 Just
$5=7,7 / 5$ Just
50p7, 35/32 ust
$11=9,11 / 9$ Just
$9=7,9 / 7$ Just
709.0909
709. 5904
715.5870
709.4573
708.1137
710.8098
710.5448
708.8269
711.0430
729.2191
710.6807
707.8771
710.5291
708.7710

* See Barbour, "Tuning and Temperament", for sources.

TABLE 2.
FUNCTIUNS
INTERVALS
GENERATING FUNCTIONS
ERROR FUNCTIONS

## Negat1ve Systems

Fifth
Major Third (5/4)
Harmonic Seventh
Harmonic Fourth
Harmonic Sixth (1
Positive Systems
Fifth
Major Third (5/4)
Harmonic Seventh (7/4)
Harmonic Fourth (11/8)
Harmonic Sixth (13/8)
Doubly Positive Systems

| Fifth | X | $\mathrm{F}-\mathrm{X}$ |
| :--- | :--- | :--- |
| Major Third $(5 / 4)$ | $9 \mathrm{X}-5 \phi$ | $\mathrm{~T}-9 \mathrm{X}+\varnothing$ |
| Harmonic Seventh $(7 / 4)$ | $2 \phi-2 \mathrm{X}$ | $\mathrm{S}+2 \mathrm{X}-2 \varnothing$ |
| Harmonic Fourth $(11 / 8)$ | $4 \phi-6 \mathrm{X}$ | $\mathrm{E}+6 \mathrm{X}-4 \phi$ |
| Harmonic Fourth $(11 / 8)$ | $16 \mathrm{X}-9 \varnothing$ | $\mathrm{E}-16 \mathrm{X}+9 \varnothing$ |
| Harmonic Sixth $(13 / 8)$ | $13 \mathrm{X}-7 \varnothing$ | $\mathrm{Th}-13 \mathrm{X}+7 \phi$ |
| Neutral Third $(11 / 9)$ | $14 \mathrm{X}-8 \varnothing$ | $\mathrm{~N}-14 \mathrm{X}+8 \varnothing$ |
| Supramajor Third $(9 / 7)$ | $4 \mathrm{X}-2 \varnothing$ | $\mathrm{St}-4 \mathrm{X}+2 \varnothing$ |

* The symbols in these expressions stand for the following just intervals in cents:

$$
\begin{array}{ccc}
\mathrm{F}=701.955001 \quad \mathrm{~T}=386.313714 & \mathrm{~S}=968.825906 \\
\mathrm{E}=551 \cdot 317942 & \mathrm{Th}=840 \cdot .527662 & \mathrm{~N}=347.407941 \\
\mathrm{St}=435.084095 & \emptyset=1200.000000 .
\end{array}
$$

TABLE 3.
LEAST SQUARES SOLUTIONS

Negative Systems
LSQ 3.5
LSQ 3.?
LSQ 5.?
LSQ 3.5.7
ISQ 3,5,7,11
LSQ 3,5,7,11,13
LSQ 5,7,11

Positive Systems

| LSQ 3,5 | 701.7145 |
| :--- | :--- |
| LSQ 3,7 | 702.2253 |
| LSQ 5,7 | 702.0997 |
| LSQ $3,5,7$ | 702.0992 |
| LSQ $3,5,7.11$ | 702.4345 |
| LSQ $3,5,7,11,13$ | 702.6053 |

Doubly Positive Systems
LSQ 3,5
LSQ 3,7
LSQ 5,7
LSQ $3,5,7$
LSQ $3,5, ?, 11 \quad$ (6X)
LSQ $3,5,7,11$ (16X)
LSQ $3,5,7,11,13$ (6X)
LSQ 3,5,7,11,13 (16X)

Fifths in Cents
696.8947
696.9328
696.8406
696.8843
697.1864
696.7975
696.1755
701.7145
702.2253
702. 0997
702.0992
702.6053
709.4973
712.8606
709.8726
709.7805
709.2887
709.5386
710.1721
709.9590

* See Table 2. for the two alternate functions of $11 / 8$. The notation, ( 6 X ) or ( 16 X ), refers to the length of the chain of fifths which defines this interval.

