back to list

Some seven limit TOP tunings

🔗Gene Ward Smith <gwsmith@svpal.org>

1/8/2004 7:59:03 PM

Comments?

meantone

[1201.69852049457, 1899.26290957479, 2790.25755632091,
3370.54832931857]

miracle

[1200.63101379502, 1900.95486766285, 2784.84854520592, 3368.45175676244]

tertiathirds

[1203.18730860812, 1907.00676548748, 2780.90050601280,
3359.87799995998]

porcupine

[1196.90596030328, 1906.85893776044, 2779.12957616631,
3367.71788629877]

dominant seventh

[1195.22895145839, 1894.57688783731, 2797.39174551566, 3382.21993307575]

diminished

[1194.12845965338, 1892.64882959452, 2788.24517433455, 3385.30940416124]

pajara

[1196.89342188995, 1901.90667876129, 2779.10046287214, 3377.54717381711]

orwell

[1199.53265690430, 1900.45553028115, 2784.11702916383, 3371.48183436847]

🔗Paul Erlich <perlich@aya.yale.edu>

1/9/2004 12:11:12 AM

--- In tuning-math@yahoogroups.com, "Gene Ward Smith" <gwsmith@s...>
wrote:

> pajara
>
> [1196.89342188995, 1901.90667876129, 2779.10046287214,
3377.54717381711]

numerator denominator temp.cents error error/comp.
10 9 172.18 10.223 1.5748
9 8 213.13 9.2231 1.4948
8 7 213.13 18.041 3.1066
7 6 278.75 11.876 2.2024
6 5 319.7 4.0584 0.82707
5 4 385.31 1.0001 0.2314
9 7 426.27 8.8179 1.4752
4 3 491.88 6.1648 1.7196
7 5 598.45 15.935 3.1066
10 7 598.45 19.041 3.1066
3 2 705.01 3.0583 1.1831
8 5 811.58 2.1065 0.39581
5 3 877.19 7.1649 1.8339
12 7 918.15 14.983 2.3439
7 4 983.76 14.934 3.1066
9 5 1024.7 7.1166 1.2958
2 1 1196.9 3.1066 3.1066
15 7 1303.5 15.983 2.3804
9 4 1410 6.1165 1.1831
7 3 1475.6 8.7696 1.9966
12 5 1516.6 0.95177 0.16113
5 2 1582.2 4.1067 1.2362
8 3 1688.8 9.2714 2.0221
14 5 1795.3 12.828 2.0929
3 1 1901.9 0.048322 0.030488
16 5 2008.5 5.2131 0.8246
10 3 2074.1 10.272 2.0933
7 2 2180.7 11.828 3.1066
18 5 2221.6 4.01 0.6177
15 4 2287.2 1.0484 0.17749
4 1 2393.8 6.2132 3.1066
21 5 2500.4 15.886 2.366
9 2 2606.9 3.0099 0.72182
14 3 2672.5 5.663 1.0502
5 1 2779.1 7.2133 3.1066
21 4 2885.7 14.886 2.3287
16 3 2885.7 12.378 2.2163
6 1 3098.8 3.1549 1.2205
25 4 3164.4 8.2133 1.2362
20 3 3271 13.378 2.2648
7 1 3377.5 8.7213 3.1066
15 2 3484.1 4.155 0.84677
8 1 3590.7 9.3197 3.1066
25 3 3656.3 14.378 2.3083
9 1 3803.8 0.096644 0.030488
28 3 3869.4 2.5564 0.39992
10 1 3976 10.32 3.1066
21 2 4082.6 11.78 2.1845
32 3 4082.6 15.485 2.3515
35 3 4254.7 1.5563 0.2318
12 1 4295.7 6.2615 1.7466
25 2 4361.3 11.32 2.0057
27 2 4508.8 2.9616 0.51463
14 1 4574.4 5.6147 1.4747
15 1 4681 7.2616 1.8587
16 1 4787.6 12.426 3.1066
35 2 4959.8 4.6146 0.75288
18 1 5000.7 3.2032 0.76817
20 1 5172.9 13.426 3.1066
21 1 5279.5 8.6729 1.9746
45 2 5386 4.2033 0.64748
24 1 5492.6 9.3681 2.0432
49 2 5558.2 20.549 3.1066
25 1 5558.2 14.427 3.1066
27 1 5705.7 0.14497 0.030488
28 1 5771.3 2.5081 0.52172
30 1 5877.9 10.368 2.113
32 1 5984.5 15.533 3.1066
35 1 6156.6 1.508 0.294
36 1 6197.6 6.3098 1.2205
40 1 6369.8 16.533 3.1066
42 1 6476.3 5.5664 1.0323
45 1 6582.9 7.3099 1.331
48 1 6689.5 12.475 2.2336
49 1 6755.1 17.443 3.1066
50 1 6755.1 17.533 3.1066
54 1 6902.6 3.2515 0.56501
56 1 6968.2 0.59847 0.10305
60 1 7074.8 13.475 2.2812
63 1 7181.4 8.6246 1.4429
64 1 7181.4 18.639 3.1066
70 1 7353.5 1.5986 0.26081
72 1 7394.5 9.4164 1.5262
75 1 7460.1 14.475 2.3238
80 1 7566.7 19.64 3.1066
81 1 7607.6 0.19329 0.030488
84 1 7673.2 2.4598 0.3848
90 1 7779.8 10.416 1.6045
96 1 7886.4 15.581 2.3662
98 1 7952 14.336 2.1673
100 1 7952 20.64 3.1066
105 1 8058.6 1.4597 0.2174
3.1066 looks like the max . . . compare with 22-equal:

numerator denominator temp.cents error error/comp.
10 9 163.64 18.767 2.8909
9 8 218.18 14.272 2.3131
8 7 218.18 12.992 2.2372
7 6 272.73 5.8564 1.0861
6 5 327.27 11.631 2.3704
5 4 381.82 4.4955 1.0402
9 7 436.36 1.2795 0.21407
4 3 490.91 7.1359 1.9905
7 5 600 17.488 3.4094
10 7 600 17.488 2.8532
3 2 709.09 7.1359 2.7605
8 5 818.18 4.4955 0.84472
5 3 872.73 11.631 2.9772
12 7 927.27 5.8564 0.91616
7 4 981.82 12.992 2.7026
9 5 1036.4 18.767 3.4173
2 1 1200 0 0
15 7 1309.1 10.352 1.5418
9 4 1418.2 14.272 2.7605
7 3 1472.7 5.8564 1.3333
12 5 1527.3 11.631 1.9691
5 2 1581.8 4.4955 1.3533
8 3 1690.9 7.1359 1.5564
14 5 1800 17.488 2.8532
3 1 1909.1 7.1359 4.5023
16 5 2018.2 4.4955 0.7111
10 3 2072.7 11.631 2.3704
7 2 2181.8 12.992 3.4124
18 5 2236.4 18.767 2.8909
15 4 2290.9 2.6404 0.447
4 1 2400 0 0
21 5 2509.1 24.624 3.6674
9 2 2618.2 14.272 3.4226
14 3 2672.7 5.8564 1.0861
5 1 2781.8 4.4955 1.9361
21 4 2890.9 20.128 3.1488
16 3 2890.9 7.1359 1.2777
6 1 3109.1 7.1359 2.7605
25 4 3163.6 8.9911 1.3533
20 3 3272.7 11.631 1.9691
7 1 3381.8 12.992 4.6279
15 2 3490.9 2.6404 0.5381
8 1 3600 0 0
25 3 3654.5 16.127 2.5891
9 1 3818.2 14.272 4.5023
28 3 3872.7 5.8564 0.91616
10 1 3981.8 4.4955 1.3533
21 2 4090.9 20.128 3.7328
32 3 4090.9 7.1359 1.0837
35 3 4254.5 1.3608 0.20268
12 1 4309.1 7.1359 1.9905
25 2 4363.6 8.9911 1.5931
27 2 4527.3 21.408 3.7199
14 1 4581.8 12.992 3.4124
15 1 4690.9 2.6404 0.67583
16 1 4800 0 0
35 2 4963.6 8.4967 1.3863
18 1 5018.2 14.272 3.4226
20 1 5181.8 4.4955 1.0402
21 1 5290.9 20.128 4.5826
45 2 5400 9.7763 1.5059
24 1 5509.1 7.1359 1.5564
49 2 5563.6 25.985 3.9283
25 1 5563.6 8.9911 1.9361
27 1 5727.3 21.408 4.5023
28 1 5781.8 12.992 2.7026
30 1 5890.9 2.6404 0.5381
32 1 6000 0 0
35 1 6163.6 8.4967 1.6565
36 1 6218.2 14.272 2.7605
40 1 6381.8 4.4955 0.84472
42 1 6490.9 20.128 3.7328
45 1 6600 9.7763 1.7801
48 1 6709.1 7.1359 1.2777
49 1 6763.6 25.985 4.6279
50 1 6763.6 8.9911 1.5931
54 1 6927.3 21.408 3.7199
56 1 6981.8 12.992 2.2372
60 1 7090.9 2.6404 0.447
63 1 7200 27.264 4.5613
64 1 7200 0 0
70 1 7363.6 8.4967 1.3863
72 1 7418.2 14.272 2.3131
75 1 7472.7 1.8552 0.29783
80 1 7581.8 4.4955 0.7111
81 1 7636.4 28.544 4.5023
84 1 7690.9 20.128 3.1488
90 1 7800 9.7763 1.5059
96 1 7909.1 7.1359 1.0837
98 1 7963.6 25.985 3.9283
100 1 7963.6 8.9911 1.3533
105 1 8072.7 15.633 2.3283