back to list

A look at 13-limit linear temperaments

🔗Gene Ward Smith <genewardsmith@juno.com>

11/1/2002 7:17:05 PM

I did this admissions-committee style, with two different ways to make the cut--either unweighted badness less than 250, or graham badness less than 660. Limits are graham complexity less than or equal to 50, and rms error below 20. Note the two different versions of miracle!

[[1, 1, -5, -1, 2, 4], [0, 2, 25, 13, 5, -1]] [1200., 351.6171952]

rms 4.164243901 comp 13.36413110 graham 26

bad 203.4451071 grabad 552.0725839

mos [10, 17, 24, 41, 58, 99]

[[1, 2, 2, 3, 4, 4], [0, 4, -3, 2, 5, 3]] [1200., -126.4454893]

rms 19.07231186 comp 5.059644256 graham 11

bad 217.0617566 grabad 695.8127255

mos [10, 19, 28, 47, 66, 85]

[[1, 1, -1, 3, 6, 8], [0, 3, 17, -1, -13, -22]] [1200., 234.4801337]

rms 2.768744646 comp 18.44857718 graham 39

bad 219.3952496 grabad 674.3413860

mos [11, 16, 21, 26, 31, 36, 41, 46, 87]

[[1, 1, 3, 3, 2, 0], [0, 6, -7, -2, 15, 38]] [1200., 116.7795117]

rms 2.215733090 comp 21.71865558 graham 45

bad 224.2677630 grabad 668.8615243

mos [10, 11, 21, 31, 41, 72]

[[2, 5, 8, 5, 6, 8], [0, 6, 11, -2, -3, 2]] [600.0000000, -183.2252192]

rms 3.167218102 comp 17.40114939 graham 30

bad 229.9031248 grabad 520.4270399

mos [14, 20, 26, 46, 72]

[[3, 0, 3, 10, 8, 0], [0, 6, 5, -2, 3, 14]] [400.0000000, 316.9938762]

rms 1.823490161 comp 25.26064132 graham 48

bad 231.5101214 grabad 606.4085004

mos [12, 15, 27, 42, 57, 72, 87]

[[1, 0, -4, 17, -6, 10], [0, 1, 4, -9, 6, -4]] [1200., 1892.727763]

rms 12.11708320 comp 7.338255924 graham 15

bad 240.8725835 grabad 703.9389215

mos [12, 19, 26, 45, 71, 97]

[[1, 0, -31, -21, -14, -9], [0, 1, 21, 15, 11, 8]] [1200., 1904.391710]

rms 6.209025908 comp 11.46080276 graham 21

bad 240.9051197 grabad 597.5199555

mos [12, 17, 29, 46, 63]

[[1, 0, -6, 4, -12, -7], [0, 4, 21, -3, 39, 27]] [1200., 475.6946183]

rms 2.245890676 comp 22.61415486 graham 42

bad 241.5233672 grabad 611.3114745

mos [13, 18, 23, 28, 33, 38, 43, 48, 53, 58]

[[29, 46, 0, 14, 33, 40], [0, 0, 1, 1, 1, 1]] [41.37931034, 2788.239580]

rms 2.277983567 comp 22.46330341 graham 29

bad 242.5275176 grabad 355.7521911

mos [58, 87]

[[1, 1, 0, 2, 3, 3], [0, 5, 20, 7, 4, 6]] [1200., 139.4310901]

rms 8.867498827 comp 9.091204541 graham 20

bad 243.0710758 grabad 793.1332067

mos [17, 26, 43, 69]

[[3, 0, 7, 6, 8, 4], [0, 2, 0, 1, 1, 3]] [400.0000000, 950.4747331]

rms 15.05561416 comp 6.434283174 graham 12

bad 245.7246539 grabad 625.8501279

mos [15, 24, 39, 63, 87]

[[1, 0, 15, 25, -33, -28], [0, 1, -8, -14, 23, 20]] [1200., 1902.127698]

rms 2.806870405 comp 19.72435043 graham 37

bad 245.8818240 grabad 631.7204666

mos [12, 17, 29, 41, 53, 94]

[[1, 4, 5, 2, 4, 8], [0, 9, 10, -3, 2, 16]] [1200., -322.1404543]

rms 6.393156943 comp 11.47388339 graham 21

bad 248.4740356 grabad 615.2396380

mos [11, 15, 26, 41, 67]

[[2, 0, 11, 31, 45, 55], [0, 1, -2, -8, -12, -15]] [600.0000000, 1903.786589]

rms 2.880707578 comp 19.68247952 graham 34

bad 251.5468524 grabad 571.1070885

mos [10, 12, 22, 34, 46, 58]

[[1, 1, 3, 3, 2, 4], [0, 6, -7, -2, 15, -3]] [1200., 116.8457500]

rms 6.194083836 comp 11.81524439 graham 22

bad 251.5597433 grabad 639.1622256

mos [10, 11, 21, 31, 41, 72]

[[1, 0, -4, -3, 4, 0], [0, 3, 12, 11, -1, 7]] [1200., 633.5217226]

rms 12.76012488 comp 7.304108433 graham 13

bad 251.8869934 grabad 598.0946990

mos [11, 13, 15, 17, 19, 36, 53, 89]

[[2, 1, -12, 2, -9, -2], [0, 3, 23, 5, 22, 13]] [600.0000000, 434.1894677]

rms 2.006172054 comp 26.72452058 graham 46

bad 277.1616007 grabad 625.8999601

mos [14, 22, 36, 58, 94]

[[2, 1, 0, 5, 6, 4], [0, 7, 15, 2, 3, 11]] [600.0000000, 185.9945003]

rms 4.007057140 comp 17.17556404 graham 30

bad 285.2279283 grabad 658.4266756

mos [14, 20, 26, 32, 58, 84]

[[2, 2, 5, 6, 5, 7], [0, 3, -1, -1, 5, 1]] [600.0000000, 231.2498543]

rms 12.34827552 comp 8.160882306 graham 14

bad 287.8803242 grabad 646.8422283

mos [10, 16, 26, 36, 62, 88]