back to list

72-et scale classes based on 385/384

🔗genewardsmith <genewardsmith@juno.com>

1/9/2002 10:24:10 PM

Some of the three-step-size scale types have shown up before, but some have not; I notice that Blackjack is also in here.

7 tones

[7, 12, 7, 16]
[2, 1, 2, 2]
[[2, 3, 5, 5, 7], [1, 2, 2, 3, 4], [2, 3, 4, 5, 8], [2, 3, 5, 6, 6]]

8 tones

[7, 7, 5, 16]
[2, 3, 1, 2]
[[2, 3, 5, 5, 7], [3, 5, 6, 8, 12], [1, 2, 2, 3, 4], [2, 3, 5, 6, 6]]

9 tones

[7, 12, 7, 4]
[2, 3, 2, 2]
[[2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [2, 3, 4, 5, 8], [2, 3, 5, 6, 6]]

[7, 7, 12, 9]
[2, 4, 1, 2]
[[2, 3, 5, 5, 7], [4, 6, 9, 11, 14], [1, 2, 2, 3, 4], [2, 3, 5, 6, 6]]

10 tones

[7, 5, 7, 9]
[5, 1, 2, 2]
[[5, 8, 12, 14, 17], [1, 2, 2, 3, 4], [2, 3, 4, 5, 8], [2, 3, 5, 6, 6]]

[7, 5, 7, 11]
[2, 3, 3, 2]
[[2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [3, 5, 6, 8, 12], [2, 3, 5, 6, 6]]

[7, 9, 7, 3]
[2, 3, 4, 1]
[[2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [4, 6, 9, 11, 14], [1, 2, 2, 3, 4]]

11 tones

[7, 7, 12, 2]
[2, 6, 1, 2]
[[2, 3, 5, 5, 7], [6, 9, 14, 17, 20], [1, 2, 2, 3, 4], [2, 3, 5, 6, 6]]

[7, 12, 4, 3]
[2, 3, 4, 2]
[[2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [4, 6, 9, 11, 14], [2, 3, 4, 5, 8]]

12 tones

[7, 7, 5, 2]
[4, 5, 1, 2]
[[4, 6, 9, 11, 14], [5, 8, 12, 14, 17], [1, 2, 2, 3, 4], [2, 3, 5, 6, 6]]

[7, 2, 7, 10]
[2, 3, 6, 1]
[[2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [6, 9, 14, 17, 20], [1, 2, 2, 3, 4]]

[5, 7, 7, 4]
[3, 5, 2, 2]
[[3, 5, 7, 9, 10], [5, 8, 12, 14, 17], [2, 3, 4, 5, 8], [2, 3, 5, 6, 6]]

[7, 7, 5, 2]
[7, 2, 1, 2]
[[7, 11, 16, 20, 24], [2, 3, 5, 5, 7], [1, 2, 2, 3, 4], [2, 3, 5, 6, 6]]

[2, 7, 5, 11]
[2, 3, 5, 2]
[[2, 3, 5, 5, 7], [3, 5, 6, 8, 12], [5, 8, 12, 14, 17], [2, 3, 5, 6, 6]]

[5, 7, 2, 9]
[3, 5, 2, 2]
[[3, 5, 6, 8, 12], [5, 8, 12, 14, 17], [2, 3, 4, 5, 8], [2, 3, 5, 6, 6]]

13 tones

[2, 7, 7, 3]
[3, 4, 5, 1]
[[3, 5, 7, 9, 10], [4, 6, 9, 11, 14], [5, 8, 12, 14, 17], [1, 2, 2, 3, 4]]

[7, 7, 2, 3]
[7, 2, 3, 1]
[[7, 11, 16, 20, 24], [2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [1, 2, 2, 3, 4]]

14 tones

[5, 7, 2, 10]
[2, 6, 5, 1]
[[2, 3, 5, 5, 7], [6, 9, 14, 17, 20], [5, 8, 12, 14, 17], [1, 2, 2, 3, 4]]

[5, 2, 7, 7]
[3, 4, 5, 2]
[[3, 5, 6, 8, 12], [4, 6, 9, 11, 14], [5, 8, 12, 14, 17], [2, 3, 5, 6, 6]]

[4, 7, 8, 3]
[7, 2, 3, 2]
[[7, 11, 16, 20, 24], [2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [2, 3, 4, 5, 8]]

[5, 4, 7, 3]
[3, 4, 5, 2]
[[3, 5, 7, 9, 10], [4, 6, 9, 11, 14], [5, 8, 12, 14, 17], [2, 3, 4, 5, 8]]

15 tones

[7, 5, 2, 3]
[7, 2, 5, 1]
[[7, 11, 16, 20, 24], [2, 3, 5, 5, 7], [5, 8, 12, 14, 17], [1, 2, 2, 3, 4]]

16 tones

[4, 3, 9, 4]
[2, 7, 3, 4]
[[2, 3, 5, 5, 7], [7, 11, 16, 19, 25], [3, 5, 7, 9, 10], [4, 6, 9, 11, 14]]

[3, 8, 4, 3]
[2, 3, 9, 2]
[[2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [9, 14, 21, 25, 31], [2, 3, 4, 5, 8]]

[2, 5, 7, 5]
[6, 3, 5, 2]
[[6, 9, 14, 17, 20], [3, 5, 6, 8, 12], [5, 8, 12, 14, 17], [2, 3, 5, 6, 6]]

[2, 5, 7, 5]
[6, 4, 5, 1]
[[6, 9, 14, 17, 20], [4, 6, 9, 11, 14], [5, 8, 12, 14, 17], [1, 2, 2, 3, 4]]

17 tones

[2, 5, 5, 9]
[7, 3, 5, 2]
[[7, 11, 16, 19, 25], [3, 5, 6, 8, 12], [5, 8, 12, 14, 17], [2, 3, 5, 6, 6]]

[2, 5, 7, 3]
[7, 4, 5, 1]
[[7, 11, 16, 20, 24], [4, 6, 9, 11, 14], [5, 8, 12, 14, 17], [1, 2, 2, 3, 4]
]

[4, 1, 7, 3]
[7, 3, 5, 2]
[[7, 11, 16, 20, 24], [3, 5, 7, 9, 10], [5, 8, 12, 14, 17], [2, 3, 4, 5, 8]]

[3, 7, 2, 8]
[2, 6, 8, 1]
[[2, 3, 5, 5, 7], [6, 9, 14, 17, 20], [8, 13, 19, 22, 28], [1, 2, 2, 3, 4]]

[1, 6, 3, 7]
[2, 3, 8, 4]
[[2, 3, 5, 5, 7], [3, 5, 7, 9, 10], [8, 13, 19, 22, 28], [4, 6, 9, 11, 14]]

18 tones

[7, 3, 2, 1]
[7, 2, 8, 1]
[[7, 11, 16, 20, 24], [2, 3, 5, 5, 7], [8, 13, 19, 22, 28], [1, 2, 2, 3, 4]]

19 tones

[4, 4, 3, 5]
[7, 2, 7, 3]
[[7, 11, 16, 20, 24], [2, 3, 5, 5, 7], [7, 11, 16, 19, 25], [3, 5, 7, 9, 10]
]

[5, 4, 3, 3]
[3, 9, 5, 2]
[[3, 5, 7, 9, 10], [9, 14, 21, 25, 31], [5, 8, 12, 14, 17], [2, 3, 4, 5, 8]]

[2, 5, 5, 7]
[9, 3, 5, 2]
[[9, 14, 21, 25, 31], [3, 5, 6, 8, 12], [5, 8, 12, 14, 17], [2, 3, 5, 6, 6]]

[3, 5, 4, 4]
[7, 3, 4, 5]
[[7, 11, 16, 19, 25], [3, 5, 7, 9, 10], [4, 6, 9, 11, 14], [5, 8, 12, 14, 17
]]

20 tones

[5, 3, 7, 1]
[3, 8, 4, 5]
[[3, 5, 7, 9, 10], [8, 13, 19, 22, 28], [4, 6, 9, 11, 14], [5, 8, 12, 14, 17
]]

21 tones

[1, 5, 3, 8]
[6, 8, 6, 1]
[[6, 9, 14, 17, 20], [8, 13, 19, 22, 28], [6, 8, 14, 17, 19], [1, 2, 2, 3, 4
]]

[6, 1, 3, 1]
[7, 2, 8, 4]
[[7, 11, 16, 20, 24], [2, 3, 5, 5, 7], [8, 13, 19, 22, 28], [4, 6, 9, 11, 14
]]

[2, 5, 2, 5]
[6, 9, 5, 1]
[[6, 9, 14, 17, 20], [9, 14, 21, 25, 31], [5, 8, 12, 14, 17], [1, 2, 2, 3, 4
]]

22 tones

[4, 3, 1, 4]
[7, 7, 3, 5]
[[7, 11, 16, 20, 24], [7, 11, 16, 19, 25], [3, 5, 7, 9, 10], [5, 8, 12, 14,
17]]

[5, 1, 5, 2]
[7, 8, 5, 2]
[[7, 11, 16, 20, 24], [8, 13, 19, 22, 28], [5, 8, 12, 14, 17], [2, 3, 4, 5,
8]]

[1, 5, 3, 7]
[7, 8, 6, 1]
[[7, 11, 16, 20, 24], [8, 13, 19, 22, 28], [6, 8, 14, 17, 19], [1, 2, 2, 3,
4]]

[2, 5, 2, 3]
[7, 9, 5, 1]
[[7, 11, 16, 20, 24], [9, 14, 21, 25, 31], [5, 8, 12, 14, 17], [1, 2, 2, 3,
4]]

24 tones

[5, 3, 2, 1]
[7, 8, 4, 5]
[[7, 11, 16, 20, 24], [8, 13, 19, 22, 28], [4, 6, 9, 11, 14], [5, 8, 12, 14
, 17]]

[4, 2, 3, 5]
[6, 8, 9, 1]
[[6, 9, 14, 17, 20], [8, 13, 19, 22, 28], [9, 14, 21, 25, 31], [1, 2, 2, 3,
4]]

[5, 3, 1, 6]
[3, 8, 9, 4]
[[3, 5, 7, 9, 10], [8, 13, 19, 22, 28], [9, 14, 21, 25, 31], [4, 6, 9, 11,
14]]

25 tones

[4, 2, 3, 1]
[7, 8, 9, 1]
[[7, 11, 16, 20, 24], [8, 13, 19, 22, 28], [9, 14, 21, 25, 31], [1, 2, 2, 3
, 4]]

27 tones

[5, 2, 1, 3]
[7, 7, 8, 5]
[[7, 11, 16, 20, 24], [7, 11, 16, 19, 25], [8, 13, 19, 22, 28], [5, 8, 12,
14, 17]]

28 tones

[5, 3, 1, 1]
[7, 8, 9, 4]
[[7, 11, 16, 20, 24], [8, 13, 19, 22, 28], [9, 14, 21, 25, 31], [4, 6, 9, 11
, 14]]