back to list

M22 and Steiner S(3,6,22) Part Two

🔗Paul <phjelmstad@msn.com>

9/16/2011 11:28:51 PM

2

5

9

12

17

20

0

0

3

2

1

0

4

2

0

2

1

0

3

1

4

0

0

2

0

2

2

2

5

8

13

16

21

0

0

4

0

2

2

0

4

1

0

2

0

4

2

0

1

0

0

2

4

0

1

4

10

13

16

19

0

0

4

1

0

3

2

0

3

2

0

0

4

0

2

3

0

1

3

0

2

1

3

10

14

18

22

0

1

0

5

0

2

0

4

0

3

0

0

0

0

0

0

1

5

2

4

3

2

4

8

12

15

19

0

1

1

3

1

1

3

1

1

1

2

0

1

1

3

1

1

3

1

1

1

1

3

7

11

15

19

0

1

1

3

2

0

2

2

2

1

1

0

1

2

2

2

1

3

0

2

1

2

4

7

11

16

20

0

1

1

3

2

1

1

1

4

1

0

0

1

2

1

4

1

3

1

1

1

4

6

11

14

19

22

0

1

2

1

2

1

2

3

1

1

1

0

2

2

2

1

1

1

1

3

1

2

4

10

14

17

21

0

1

2

2

1

1

3

1

1

2

1

0

2

1

3

1

1

2

1

1

2

1

5

8

14

17

19

0

1

2

2

1

2

1

1

3

1

1

0

2

1

1

3

1

2

2

1

1

2

6

9

11

15

21

0

1

2

2

1

2

2

0

3

2

0

0

2

1

2

3

1

2

2

0

2

1

4

8

11

18

21

0

1

3

1

2

0

3

1

1

3

0

0

3

2

3

1

1

1

0

1

3

2

6

8

14

18

20

TI

0

2

0

3

0

4

0

2

0

4

0

0

0

0

0

0

2

3

4

2

4

2

6

10

12

16

22

TI

0

2

0

3

0

4

0

2

0

4

0

0

0

0

0

0

2

3

4

2

4

2

4

9

13

18

22

0

2

0

3

2

1

1

1

4

0

1

0

0

2

1

4

2

3

1

1

0

1

3

8

12

16

20

0

2

0

4

0

2

0

4

0

3

0

0

0

0

0

0

2

4

2

4

3

1

5

10

12

15

21

0

2

1

1

2

2

1

1

2

1

2

0

1

2

1

2

2

1

2

1

1

1

5

7

13

18

20

0

2

1

1

2

2

2

1

2

1

1

0

1

2

2

2

2

1

2

1

1

3

6

11

13

16

18

0

2

2

0

3

0

3

1

1

3

0

0

2

3

3

1

2

0

0

1

3

3

6

8

10

19

21

0

3

1

2

1

1

2

0

3

0

2

0

1

1

2

3

3

2

1

0

0

1

4

9

14

15

20

1

0

2

0

3

3

0

2

1

1

2

1

2

3

0

1

0

0

3

2

1

1

6

9

12

18

19

TI

1

0

2

1

2

2

1

1

2

2

1

1

2

2

1

2

0

1

2

1

2

1

6

10

11

17

20

TI

1

0

2

1

2

2

1

1

2

2

1

1

2

2

1

2

0

1

2

1

2

1

4

7

12

17

22

1

0

2

1

3

2

1

1

1

2

1

1

2

3

1

1

0

1

2

1

2

2

3

7

12

18

21

1

0

2

2

2

2

1

1

2

1

1

1

2

2

1

2

0

2

2

1

1

2

6

7

13

17

19

1

1

0

2

2

2

2

0

1

2

2

1

0

2

2

1

1

2

2

0

2

1

5

9

11

16

22

1

1

0

2

2

2

2

1

1

1

2

1

0

2

2

1

1

2

2

1

1

2

3

9

14

16

19

1

1

1

0

3

2

2

1

1

2

1

1

1

3

2

1

1

0

2

1

2

3

5

11

14

20

21

1

1

1

1

1

3

2

1

2

1

1

1

1

1

2

2

1

1

3

1

1

2

3

10

13

15

20

1

1

1

1

3

0

2

1

1

3

1

1

1

3

2

1

1

1

0

1

3

1

3

9

13

17

21

1

1

1

3

1

0

2

2

2

1

1

1

1

1

2

2

1

3

0

2

1

3

5

12

13

19

22

1

1

2

0

1

2

2

2

2

2

0

1

2

1

2

2

1

0

2

2

2

2

3

8

11

17

22

1

1

2

0

2

2

1

3

2

0

1

1

2

2

1

2

1

0

2

3

0

3

5

8

9

15

18

1

1

2

1

1

2

2

0

2

3

0

1

2

1

2

2

1

1

2

0

3

4

6

7

10

15

18

1

1

3

1

1

1

0

3

1

1

2

1

3

1

0

1

1

1

1

3

1

1

6

7

14

16

21

TI

1

2

0

0

2

1

4

2

2

1

0

1

0

2

4

2

2

0

1

2

1

1

6

8

13

15

22

TI

1

2

0

0

2

1

4

2

2

1

0

1

0

2

4

2

2

0

1

2

1

2

5

7

14

15

22

1

2

1

0

2

0

3

2

2

2

0

1

1

2

3

2

2

0

0

2

2

3

5

7

10

16

17

1

2

1

1

1

1

2

1

2

2

1

1

1

1

2

2

2

1

1

1

2

7

10

12

14

19

20

TI

1

2

1

1

2

1

2

1

2

2

0

1

1

2

2

2

2

1

1

1

2

9

10

15

17

19

22

TI

1

2

1

1

2

1

2

1

2

2

0

1

1

2

2

2

2

1

1

1

2

4

5

8

10

20

22

1

2

1

2

2

2

1

1

0

3

0

1

1

2

1

0

2

2

2

1

3

7

9

11

14

17

18

TI

1

2

2

2

1

1

2

1

1

1

1

1

2

1

2

1

2

2

1

1

1

11

12

15

18

20

22

TI

1

2

2

2

1

1

2

1

1

1

1

1

2

1

2

1

2

2

1

1

1

3

6

12

14

15

17

1

2

3

0

1

1

0

2

2

1

2

1

3

1

0

2

2

0

1

2

1

3

6

7

9

20

22

1

2

3

1

1

2

1

1

2

0

1

1

3

1

1

2

2

1

2

1

0

4

5

12

14

16

18

1

3

0

2

0

1

1

2

2

2

1

1

0

0

1

2

3

2

1

2

2

4

5

11

13

15

17

1

3

0

2

0

2

1

1

2

2

1

1

0

0

1

2

3

2

2

1

2

4

5

7

9

19

21

1

3

1

1

2

1

1

2

0

3

0

1

1

2

1

0

3

1

1

2

3

2

5

10

11

18

19

2

0

1

0

2

2

1

4

3

0

0

2

1

2

1

3

0

0

2

4

0

4

6

12

13

20

21

2

1

0

0

1

2

3

4

2

0

0

2

0

1

3

2

1

0

2

4

0

7

8

15

17

20

21

TI

2

1

1

1

1

1

1

2

3

2

0

2

1

1

1

3

1

1

1

2

2

8

9

12

14

21

22

TI

2

1

1

1

1

1

1

2

3

2

0

2

1

1

1

3

1

1

1

2

2

7

8

16

18

19

22

TI

2

1

2

1

0

1

1

2

1

2

2

2

2

0

1

1

1

1

1

2

2

7

10

11

13

21

22

TI

2

1

2

1

0

1

1

2

1

2

2

2

2

0

1

1

1

1

1

2

2

4

6

8

9

16

17

2

2

1

1

1

0

1

2

2

2

1

2

1

1

1

2

2

1

0

2

2

8

9

11

13

19

20

TI

2

2

1

1

1

1

1

1

1

2

2

2

1

1

1

1

2

1

1

1

2

9

10

16

18

20

21

TI

2

2

1

1

1

1

1

1

1

2

2

2

1

1

1

1

2

1

1

1

2

8

10

12

13

17

18

TI

2

2

1

2

3

1

1

1

1

1

0

2

1

3

1

1

2

2

1

1

1

11

12

16

17

19

21

TI

2

2

1

2

3

1

1

1

1

1

0

2

1

3

1

1

2

2

1

1

1

7

9

12

13

15

16

2

2

3

2

1

2

1

1

1

0

0

2

3

1

1

1

2

2

2

1

0

5

6

15

16

19

20

3

0

1

2

1

0

1

2

2

2

1

3

1

1

1

2

0

2

0

2

2

3

4

7

8

13

14

I

3

0

1

2

2

2

1

0

1

2

1

3

1

2

1

1

0

2

2

0

2

3

4

15

16

21

22

I

3

0

1

2

2

2

1

0

1

2

1

3

1

2

1

1

0

2

2

0

2

5

6

17

18

21

22

3

0

1

2

2

2

1

0

1

2

1

3

1

2

1

1

0

2

2

0

2

5

6

9

10

13

14

3

0

2

4

2

0

1

2

1

0

0

3

2

2

1

1

0

4

0

2

0

13

14

15

18

19

22

3

1

2

3

2

1

1

1

1

0

0

3

2

2

1

1

1

3

1

1

0

13

14

16

17

20

21

3

1

3

3

1

1

2

1

0

0

0

3

3

1

2

0

1

3

1

1

0

8

10

11

14

15

16

3

2

2

2

2

2

1

1

0

0

0

3

2

2

1

0

2

2

2

1

0

1

2

11

12

13

14

4

2

1

0

0

0

0

0

2

4

2

4

1

0

0

2

2

0

0

0

4

1

2

7

8

9

10

I

4

2

1

0

1

2

2

2

1

0

0

4

1

1

2

1

2

0

2

2

0

1

2

15

16

17

18

I

4

2

1

0

1

2

2

2

1

0

0

4

1

1

2

1

2

0

2

2

0

3

4

9

10

11

12

T

4

2

1

0

1

2

2

2

1

0

0

4

1

1

2

1

2

0

2

2

0

3

4

17

18

19

20

TI

4

2

1

0

1

2

2

2

1

0

0

4

1

1

2

1

2

0

2

2

0

5

6

7

8

11

12

4

2

2

2

2

2

1

0

0

0

0

4

2

2

1

0

2

2

2

0

0

1

2

3

4

5

6

T

5

4

3

2

1

0

0

0

0

0

0

5

3

1

0

0

4

2

0

0

0

1

2

19

20

21

22

T

5

4

3

2

1

0

0

0

0

0

0

5

3

1

0

0

4

2

0

0

0

Oh! I should add them up, of course, then I need the duplicates. Here is
the final sum. Oops, a mistake somewhere, but it's close to FLID.

111

108

110

112

110

108

111

110

110

110

55