Another idea we can try with this kees metric business is to refine
the semistandard val. If v is a val, and if u has its p prime
coordinate equal to the coordiate for v over log2(p), then taking the
val with the minimum maximum for |u[i]-u[j]| gives a more restrictive
condition than the semistandard condition; it still does not suffice
to enforce a unique result in all cases.
--- In tuning-math@yahoogroups.com, "Gene Ward Smith" <gwsmith@s...>
wrote:
> Another idea we can try with this kees metric business is to refine
> the semistandard val. If v is a val, and if u has its p prime
> coordinate equal to the coordiate for v over log2(p), then taking the
> val with the minimum maximum for |u[i]-u[j]| gives a more restrictive
> condition than the semistandard condition; it still does not suffice
> to enforce a unique result in all cases.
You lost me.