back to list

A 31-tone difference diamond

🔗Gene Ward Smith <gwsmith@svpal.org>

8/25/2004 12:17:17 AM

The six 11-limit consonaces, 11/9, 4/3, 7/5, 3/2, 7/4, 9/5 are mapped
by 31-et to a perfect difference set. If we take all the ratios
between them reduced to an octave, we get a difference diamond:

[1, 36/35, 21/20, 15/14, 12/11, 9/8, 63/55, 7/6, 6/5, 27/22, 5/4, 9/7,
21/16, 27/20, 110/81, 88/63, 63/44, 81/55, 40/27, 32/21, 14/9, 8/5,
44/27, 5/3, 12/7, 110/63, 16/9, 11/6, 28/15, 40/21, 35/18]

With intervals differing from 11-limit consonances by 3025/3024,
540/539, 441/440, 385/384, 243/242, 225/224 and 1029/1024, it makes a
natural candidate for miracle tempering, which gives the modmos

[-25, -21, -16, -14, -13, -12, -11, -9, -8, -7, -5, -4, -3,
-2, -1, 0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 21, 25]

If we add 8019/8000 to the above list of commas, we equate the 800/729
between 40/27 and 27/20 to an 11/10, and the temperament becomes the
11-limit 72-et val. The resulting scale I give below.

! diff31_72.scl
Diff31, 11/9, 4/3, 7/5, 3/2, 7/4, 9/5 difference diamond, tempered to
72-et
31
!
50.000000
83.333333
116.666667
150.000000
200.000000
233.333333
266.666667
316.666667
350.000000
383.333333
433.333333
466.666667
516.666667
533.333333
583.333333
616.666667
666.666667
683.333333
733.333333
766.666667
816.666667
850.000000
883.333333
933.333333
966.666667
1000.000000
1050.000000
1083.333333
1116.666667
1150.000000
1200.000000