back to list

Schillinger, Double Equal Temperament, and McLaren

🔗"Paul H. Erlich" <PErlich@...>

6/24/1998 1:01:37 PM
This message is in MIME format. Since your mail reader does not understand
this format, some or all of this message may not be legible.

------ =_NextPart_000_01BD9FAA.E516B32E
Content-Type: text/plain

>Schillinger only claims that "the micro-units are the best
>averages for
>all differences between units of the 12th root of 2 and just intonation
>(natural scale)".

No, Schillinger also claims that his system can represent "mean
temperament," which must mean meantone temperament. This was both in
your original quote and in Brian McLaren's Xenharmonikon 17 article, "A
Short History of Microtonality in the 20th Century." But Schillinger is
incorrect. Meantone tuning, the tuning of choice for music from
1500-1700 and much music thereafter, is built upon consecutive perfect
fifths of 694.8 to 698.4 cents. 144tET ("double equal temperament")
contains no intervals between 691.7 and 700 cents, so cannot represent
meantone tuning. 288tET does have a 695.8-cent interval, so it can be
used to represent meantone tuning.

Although I'm probably one of very few people to have already read
McLaren's XH17 article, it does contain other factual inaccuracies, some
McLaren's own. For example, a positive tuning is one with perfect fifths
larger than 700 cents, not necessarily one with perfect fifths larger
than the just 3/2 (702 cents). However, the article is amazingly
comprehensive and I wish I had had access to all that information
earlier. Apparantly, Bosanquet studied 22-tET extensively, and Ogolevets
proclaimed it the future of music (along with 17-tET). The section of my
paper entitled "History of 22" now seems really underinformed. But my
chances of ever being able to get a hold of those writings seems very
small -- anyone know if McLaren actually had the primary sources on
hand?

------ =_NextPart_000_01BD9FAA.E516B32E
Content-Type: application/ms-tnef
Content-Transfer-Encoding: base64

eJ8+IicUAQaQCAAEAAAAAAABAAEAAQeQBgAIAAAA5AQAAAAAAADoAAEIgAcAGAAAAElQTS5NaWNy
b3NvZnQgTWFpbC5Ob3RlADEIAQWAAwAOAAAAzgcGABgAEAABACUAAwAsAQEggAMADgAAAM4HBgAY
ABAAAQAlAAMALAEBCYABACEAAAA0OURGMjEyRDc1MEJEMjExQUNEMjAwODA1RkJFM0MwNQAlBwEE
gAEAMwAAAFNjaGlsbGluZ2VyLCBEb3VibGUgRXF1YWwgVGVtcGVyYW1lbnQsIGFuZCBNY0xhcmVu
ABYSAQ2ABAACAAAAAgACAAEDkAYANAoAAC4AAAADADYAAAAAAAMABIAIIAYAAAAAAMAAAAAAAABG
AAAAAFKFAAC3DQAAHgAFgAggBgAAAAAAwAAAAAAAAEYAAAAAVIUAAAEAAAAEAAAAOC4wAAMABoAI
IAYAAAAAAMAAAAAAAABGAAAAAAGFAAAAAAAACwAAgAggBgAAAAAAwAAAAAAAAEYAAAAAA4UAAAAA
AAALAA+ACCAGAAAAAADAAAAAAAAARgAAAAAOhQAAAAAAAAMAEIAIIAYAAAAAAMAAAAAAAABGAAAA
ABCFAAAAAAAAAwARgAggBgAAAAAAwAAAAAAAAEYAAAAAEYUAAAAAAAADABSACCAGAAAAAADAAAAA
AAAARgAAAAAYhQAAAAAAAB4AJIAIIAYAAAAAAMAAAAAAAABGAAAAADaFAAABAAAAAQAAAAAAAAAe
ACWACCAGAAAAAADAAAAAAAAARgAAAAA3hQAAAQAAAAEAAAAAAAAAHgAmgAggBgAAAAAAwAAAAAAA
AEYAAAAAOIUAAAEAAAABAAAAAAAAAAIBCRABAAAADAUAAAgFAAAbBwAATFpGdXY17uIDAAoAcmNw
ZzEyNdIyAPszNgHoIAKkA+SfBxMCgwBQA9QCAGNoCsDQc2V0MBC2fQqACMg0IDsJbzACgAqBdWNb
AFALA2MAQQtgbg4QMMQzMwumID5TEgADECpsC4BnBJAgAiBsedQgYwthbQQgdBIQBUBiIhjQZSBt
DeADYC16dQMAdAQgCsAZUBkyYo0HkHQKogqAPmF2BJBuYRfQBCACEHIa9heQINpkBpBmBJAJ8GMH
kRqwlHR3CeEgGdRvZhpjaw4gGNAgA2BvBUAecTJBGiBuZCBqdRrQIO0LgHQCIBjwaQIgGvQK890X
MCggoQhwB0AgBPAHQDBlKSIuIQgKgE5vziwGABdpB0BzbxhbF3DJBCBzeRrQZW0YUAOR/RQAcBQA
EkACMBkQB4ADkR0mIXAbgQeAAjAsIiD+dxdwEgAZYCAiJ1MnUiCBIxpRJ7guIFQlsndhzx1xH1Af
EAuAIHkIYRgAzQUQZwuAIjFxdR9QGVAbH9IrwUIHIQOgTWNM6RoxbicEIFgJ8BIRBGDtAwBrAiAe
0DcaISDAGGBSZSPAIkEGAGgJESC2SAQAIIByGEAecU0ZgvsgghegdBhAK8EZMgHQHwEmQycBCHB5
LihgQnW/BUAXWiXBC4AFoRQAYyqx/k0plxnRFlAjwBkyNjQeYv0SAG8N4BlQG/Eo0g3gG+DDA2Ee
0DUwMC0vgDkQvx/DKOAotDhxGTEUAGEBgGcEkCPAJcFidQMQBUB1vnAvUQWgAIAFkDPQaRtw/iAn
0R0ANWAb4AaQGNAeU+A2OTQuOBjAJNA+AFg4LjQYUCcBcyrAMQA0NHRFVCAoIu5kCGACYBlQZSzQ
IjEnqbwiKTwSAZALgAQgbiTQOyBhBJB2JKEdhz4AMS7/L5Ef4TlSPvMjwCTCAHBCMB8FQCaoKYg2
QyrAMjg4Xz+SP/AHkRIQPLFhPfE1/T4wLT7yQldEsxnwJlMasH8eABJAH/A+YUV/Roci6kGTO6Aw
gHVnHxBJJyZA+SbAb2IBoBgxKdIecRtx7xhAHQAH4CfQbwtQGlEk0HVH5Gw6sWQYQFDCLfpI/y+K
SdFHk0GlGAA6ghvgANC3IgAiMSyBYzxwG5BjCJBHRKMHgC35b3duKsBG+QWxZXgoAE/hI8BIMDvg
/wCQPJM29SXBKdID8B8BPO39C2ByF9IY0QOgRClFMing/R1RcwrAAxBOlFlfWm0ZMukgEzMvH7Ao
OVAfsD7z6ikqwEhWoGUbcTaUL7XzNLIoAGF6F7EYMgNwJsGvGUAAgUgCH+FJXTFzTcH/R9Ef8GSy
VPFccT5SHJIY0/8LgBvxAMAgwkBQCsAXoASQeSrAQXAKsSmhGDAjwEL/V/AAcCzQElAiUCIAHNBK
kfgyMi0/klcwJiBjg2gy+R/ST2cG8GERGgFOIRhj90qRSdEZMmYz0AhwTtM4RP4oB0ACIDdAXUMv
gGmyYLH/KuAZUDxRZtNtQhhACrAn0d9AUAIwGfAikB/wIjDZaZD/KGBCMAfgEkAmMAQgOrEXkP8Y
QBnQBIFmZAmAKsAzwnAR/xIBHUMecWESGqE3Ik5hUAPvF9AFQEgwMIBsH/Aec1fwf10hBRAgwBZQ
JdFyg08jc3MAwByhLS0fwSvwKeFr/3IyBpAt9mUhVIIYMWSyGTL/JsAHcArAeOEIYXTjA6BbEXxk
PxXhAtEVgwqAEwEAAX6gAwAmAAAAAAADAC4AAAAAAAsAAgABAAAAHgBwAAEAAAATAAAAVFVOSU5H
IGRpZ2VzdCAxNDU2AAACAXEAAQAAABsAAAABvZ+Hta4tIdjYC3UR0qzSAIBfvjwFAAgKSCAAQAA5
AGBN9eSqn70BAwDxPwkEAAAeADFAAQAAAAYAAABQQVVMRQAAAAMAGkAAAAAAHgAwQAEAAAAGAAAA
UEFVTEUAAAADABlAAAAAAAMA/T/kBAAAAwCAEP////8CAUcAAQAAADQAAABjPVVTO2E9IDtwPUFj
YWRpYW4tQXNzZXQ7bD1NQVJTLTk4MDYyNDIwMDEzN1otMTAwOTQAAgH5PwEAAABLAAAAAAAAANyn
QMjAQhAatLkIACsv4YIBAAAAAAAAAC9PPUFDQURJQU4tQVNTRVQvT1U9QUFNL0NOPVJFQ0lQSUVO
VFMvQ049UEFVTEUAAB4A+D8BAAAADwAAAFBhdWwgSC4gRXJsaWNoAAAeADhAAQAAAAYAAABQQVVM
RQAAAAIB+z8BAAAASwAAAAAAAADcp0DIwEIQGrS5CAArL+GCAQAAAAAAAAAvTz1BQ0FESUFOLUFT
U0VUL09VPUFBTS9DTj1SRUNJUElFTlRTL0NOPVBBVUxFAAAeAPo/AQAAAA8AAABQYXVsIEguIEVy
bGljaAAAHgA5QAEAAAAGAAAAUEFVTEUAAABAAAcwQlL15KqfvQFAAAgwLrMW5aqfvQEeAD0AAQAA
AAEAAAAAAAAAHgAdDgEAAAAzAAAAU2NoaWxsaW5nZXIsIERvdWJsZSBFcXVhbCBUZW1wZXJhbWVu
dCwgYW5kIE1jTGFyZW4AAB4ANRABAAAALgAAADxCRTFCRkQwNzM5RDhEMTExQUNDODAwODA1RkJF
M0MwNTE0OTVGNUBNQVJTPgAAAAsAKQAAAAAACwAjAAAAAAADAAYQjl3mqgMABxAmBQAAAwAQEAEA
AAADABEQAAAAAB4ACBABAAAAZQAAAFNDSElMTElOR0VST05MWUNMQUlNU1RIQVQiVEhFTUlDUk8t
VU5JVFNBUkVUSEVCRVNUQVZFUkFHRVNGT1JBTExESUZGRVJFTkNFU0JFVFdFRU5VTklUU09GVEhF
MTJUSFJPT1QAAAAAAgF/AAEAAAAuAAAAPEJFMUJGRDA3MzlEOEQxMTFBQ0M4MDA4MDVGQkUzQzA1
MTQ5NUY1QE1BUlM+AAAAxIo=

------ =_NextPart_000_01BD9FAA.E516B32E--