back to list

Gary Morrison and Defining "Just" Intonation and "Consonance"

🔗"Paul H. Erlich" <PErlich@...>

6/18/1998 11:31:05 AM
This message is in MIME format. Since your mail reader does not understand
this format, some or all of this message may not be legible.

------ =_NextPart_000_01BD9AE7.4317D480
Content-Type: text/plain

Gary Morrison wrote,

>Speaking for my own experience, I don't perceive there to be any sort
>of absolute cutoff point either (beyond thus and so ratio). Again
>speaking in generalities, as the ratio becomes more complex, it becomes
>more difficult to attribute an audibly intuitive meaning to.

Agreed. The most complex ratio that one can tune by ear, and therefore
say that in some sense nearby intervals are approximating, will depend
on timbre, loudness, register, and duration. Slightly simpler ratios
will simultaneously be a target of approximation and themselves
approximate simpler ratios.

>Also, simpler ratios seem to claim more space around them than more
>complex ones. By that I mean that anything within something on the
>order of 75c of a simple ratio like an octave seems to be perceived as
>an approximation of an octave. But the "claim zone" as I've called it
>in the past, of a more complex ratio, such as 5:4 is much narrower.
>400c (13c sharp) clearly seems to be an approximation of 5:4, but you
>don't have to go much sharper than that before it starts sounding more
>like a flat 9:7.

I wholehearteldy agree. This is related to something Partch called
"Observation One", and central to my own theories. In TDs 848 and
851-852 I posted a largely original derivation (based on the appendix of
Van Eck's _J. S. Bach's Critique of Pure Music_) to the effect that, if
one compares intervals holding the pitch of the upper note constant, the
width of the "claim zone" of a ratio is inversely proportional to the
denominator of the ratio.

>Paul H. Erlich wrote:
>> essentially state that the simplest ratios will be most easily
>> perceived, but beyond a certain point (about 17/13 or 19/13 in
various
>> members' experience) the exact ratio (if there is one) ceases to be
>> relevant and the degree of approximation to simpler ratios is the
only
>> important factor.

So, Gary, I think we are basically in agreement. Is there something in
the above that you particularly objected to?

------ =_NextPart_000_01BD9AE7.4317D480
Content-Type: application/ms-tnef
Content-Transfer-Encoding: base64

eJ8+IgoSAQaQCAAEAAAAAAABAAEAAQeQBgAIAAAA5AQAAAAAAADoAAEIgAcAGAAAAElQTS5NaWNy
b3NvZnQgTWFpbC5Ob3RlADEIAQWAAwAOAAAAzgcGABIADgAfAAUABAAjAQEggAMADgAAAM4HBgAS
AA4AHwAJAAQAJwEBCYABACEAAAA0QzREQ0Q5MEJDMDZEMjExQUNEMjAwODA1RkJFM0MwNQBBBwEE
gAEAPgAAAEdhcnkgTW9ycmlzb24gYW5kIERlZmluaW5nICJKdXN0IiBJbnRvbmF0aW9uIGFuZCAi
Q29uc29uYW5jZSIArhUBDYAEAAIAAAACAAIAAQOQBgAkCwAALgAAAAMANgAAAAAAAwAEgAggBgAA
AAAAwAAAAAAAAEYAAAAAUoUAALcNAAAeAAWACCAGAAAAAADAAAAAAAAARgAAAABUhQAAAQAAAAQA
AAA4LjAAAwAGgAggBgAAAAAAwAAAAAAAAEYAAAAAAYUAAAAAAAALAACACCAGAAAAAADAAAAAAAAA
RgAAAAADhQAAAAAAAAsAD4AIIAYAAAAAAMAAAAAAAABGAAAAAA6FAAAAAAAAAwAQgAggBgAAAAAA
wAAAAAAAAEYAAAAAEIUAAAAAAAADABGACCAGAAAAAADAAAAAAAAARgAAAAARhQAAAAAAAAMAFIAI
IAYAAAAAAMAAAAAAAABGAAAAABiFAAAAAAAAHgAkgAggBgAAAAAAwAAAAAAAAEYAAAAANoUAAAEA
AAABAAAAAAAAAB4AJYAIIAYAAAAAAMAAAAAAAABGAAAAADeFAAABAAAAAQAAAAAAAAAeACaACCAG
AAAAAADAAAAAAAAARgAAAAA4hQAAAQAAAAEAAAAAAAAAAgEJEAEAAADuBQAA6gUAAD8JAABMWkZ1
y664qQMACgByY3BnMTI10jIA+zM2AeggAqQD5J8HEwKDAFAD1AIAY2gKwNBzZXQwELZ9CoAIyDQg
OwlvMAKACoF1Y38AUAsDDNABwQjQAEELYG6RDhAwMzMLpiBHCsAueQXQBbAFEHMCICB3cQNgdGUs
CqIKhAqAPiBTcGVhawuAZyBLAhAFwG0X0G93A6BlJngZwAiBbmMYwCBJdCBkAiAnBUAbERtwaWB2
ZSB0aASQHKFv/CBiHKAAcBfQGEAAIBlFdG9mHXBiGEAKQBiwIM5jHvAecB6AcG8LgAVAUxxwHMIg
KB1QeQIgZD0csXUEIABwINAYQCBygGF0aW8pLiAQsDZnC3IZVHMZxguAIGdfCfAEkAdAIBAIkHMb
kGH/BCAcwSGkHUEFoAeCBGAc8f8lkQtQGvAbkCAQJWYZRSXzymQGkGYN4HVsBUAdITUhwHQFEGIe
8gORYXXvKDACYBfQH8F1JDEckQeAdwBwGgIdIC4Y6iJACdFk7SIQVCThBGBzBUAmRSUF/xzAIcAa
oCPgHyADkSpwLrH2YhfQGdByJIEgwxzhGkH5HKBzYRfQLlMjkRhAB4D3HbAJ8BJAICPgCsAvcR/B
HQSQdgdAISEc8WFwcH0DYHgHcCHBFrAbkAPwbP8DIAEAGcAgwRhRIdAG0BQAfxuQCQAp4CPgBBAb
kBQAZ7cEADLRL9RkCHAhwm4iEOJTJCBnaHQqIQCQJmJ/BcAhswQgNIM4oSiRAHBl/QhgcyohHVIc
sArAI8Auga8egTOoGFEv9W0SQGwckJ8hITOnMLE4uyubPkEzIL5vG5A4rRJAPQAdEmMLYf9BkCXz
IwAA0B1hA2AvMDzE/y5CA6Al8hlFLXYuoT8gIiD+QjD1G7Aq8i5EHYEcwBoC/wPwRxIxg0cUNUIc
0B4GCyDjIEEecTc1YzuDOJUlBeUkIGspg29jAZAckUFi/ySxHTMcNiDQJKAZRSmiO9tfHnJLpkVy
HvAkwyJB5HrlLqEiJJJJJxyRLuA0oP9NYSAQGUUjkSTSCrAtQBuQX0ojJfohpEBRFWBoJJI13Do0
I4Al0VVibgrAA2COdwSQIhAZRTQwMEoAKCgxM0oAcxIRcCn/QdEvoThyTElOLx5xVdEbkP0pUSAg
oAxwGVQb1BIQHJL9HTBnHTBWQ1hDIEFDsy5T3x1QMIMm0S1ACsB0QUFDEucaAkQIFZkgPktEGjAL
YDEFQDk6NyubG7B3aF0G8GUc0F+hPTBkF9Bh/wnCLMJWEVYRFABicU1hHSGdR+hQX6FVcVH1Ik8e
sPsy4jxTT1ExL9QbcAIwJAG/HRIahRzBBbAkUSIQSQOgRFREBCA4NDghMzjoNTEtbAAyG6EfoDbR
/01xNeA7MiohaqE2sFaQNLL/BRBoRSBwJKBNYUiEM4I1ARZpRREegFYDkUVja7InBCBfSjfxIhBC
ANDaaHEBQwUQIdBxClA7grZQCHAcoE0hEA3gX1iQ/x0hJNIBEQWQUEIhwCaxHoD/LqMmUTNRZWEy
x2PhYDNTI28gEFVxHnEk0nVv4QXAbn8YoSYxAIA6MVORJNID8GS/HMB3llCrSiMlFGVSbhyQ/xIx
KiEzsR+gACA3wWmkJNL7AQB4cG1t8R0gSZMk1yubp2ErZwAokCBIIhBFWPDXDeBVgBiDOhlFPhrg
BBD/aWEHMThyAZAfAS5TJNI4pP8tQTkqHVEtIxnQAJAqIIJ3/0z3W2QghTsAG3AAIAtxH5WOKAGg
CGAFQDE3L1gA+22hijA5imIjkTMABRA6ce+CdweABtB8USca6XOBc+L+eADQhSUgYHThHMRWES6h
v1iRhoEHkR0jgndlsWUzAP8f0S/1NMEJwjuPZiM4vFYR/yTSAiCGxmErguA4sQkRkXLuZo4RBbAr
m1NAQReiG5L9RxJrGHBC0i9RhpFR8ioy/2S0B4ACMGrxJLMwokf3UvX/ieEcky5xW8FTUX0RKIFY
49hvYmp0QWYDPxZBAtEXFYMKgBMBAKDgAAADACYAAAAAAAMALgAAAAAACwACAAEAAAAeAHAAAQAA
ABMAAABUVU5JTkcgZGlnZXN0IDE0NTAAAAIBcQABAAAAGwAAAAG9msidxW6yMBUGARHSrNIAgF++
PAUABzZkUABAADkAAKXiQOeavQEDAPE/CQQAAB4AMUABAAAABgAAAFBBVUxFAAAAAwAaQAAAAAAe
ADBAAQAAAAYAAABQQVVMRQAAAAMAGUAAAAAAAwD9P+QEAAADAIAQ/////wIBRwABAAAAMwAAAGM9
VVM7YT0gO3A9QWNhZGlhbi1Bc3NldDtsPU1BUlMtOTgwNjE4MTgzMTA1Wi04MDc2AAACAfk/AQAA
AEsAAAAAAAAA3KdAyMBCEBq0uQgAKy/hggEAAAAAAAAAL089QUNBRElBTi1BU1NFVC9PVT1BQU0v
Q049UkVDSVBJRU5UUy9DTj1QQVVMRQAAHgD4PwEAAAAPAAAAUGF1bCBILiBFcmxpY2gAAB4AOEAB
AAAABgAAAFBBVUxFAAAAAgH7PwEAAABLAAAAAAAAANynQMjAQhAatLkIACsv4YIBAAAAAAAAAC9P
PUFDQURJQU4tQVNTRVQvT1U9QUFNL0NOPVJFQ0lQSUVOVFMvQ049UEFVTEUAAB4A+j8BAAAADwAA
AFBhdWwgSC4gRXJsaWNoAAAeADlAAQAAAAYAAABQQVVMRQAAAEAABzCeOBDA5Zq9AUAACDCA1BdD
55q9AR4APQABAAAAAQAAAAAAAAAeAB0OAQAAAD4AAABHYXJ5IE1vcnJpc29uIGFuZCBEZWZpbmlu
ZyAiSnVzdCIgSW50b25hdGlvbiBhbmQgIkNvbnNvbmFuY2UiAAAAHgA1EAEAAAAuAAAAPEJFMUJG
RDA3MzlEOEQxMTFBQ0M4MDA4MDVGQkUzQzA1MTQ5NURFQE1BUlM+AAAACwApAAAAAAALACMAAAAA
AAMABhCSAK5eAwAHEEkGAAADABAQAAAAAAMAERAAAAAAHgAIEAEAAABlAAAAR0FSWU1PUlJJU09O
V1JPVEUsU1BFQUtJTkdGT1JNWU9XTkVYUEVSSUVOQ0UsSURPTlRQRVJDRUlWRVRIRVJFVE9CRUFO
WVNPUlRPRkFCU09MVVRFQ1VUT0ZGUE9JTlRFSVRIRQAAAAACAX8AAQAAAC4AAAA8QkUxQkZEMDcz
OUQ4RDExMUFDQzgwMDgwNUZCRTNDMDUxNDk1REVATUFSUz4AAAAP5w==

------ =_NextPart_000_01BD9AE7.4317D480--