back to list

help on notating Yarman-24b in SCALA (under Mac) for video capture

🔗Ozan Yarman <ozanyarman@...>

3/3/2013 7:43:51 PM

Hello everyone,

I have found that the SCALA notation for 224-Equal produces the desired keyboard distribution for all the pitches of my modified Yarman-24 tuning, which is henceforth Yarman-24b given in full detail below.

However, this 224-Equal notation in SCALA's Chromatic Clavier does not display the microtonal symbols that I'd like for a video capture to demonstrate maqams. I wish to temporarily modify the original file(s) that SCALA relies on to display the symbols I want from out of the already integrated T24 (Turkish notation system of Arel Ezgi).

I don't know how to do this, so I need assistance from the kind spirits lurking here.

Specifically, I need to replace E\ and B\ to read E and B (naturals), the regular sharps or flats to go as C#/Db, D#Eb, F#/Gb, G#/Ab, A#/Bb, the "comma higher" E‡ and B‡ to show properly, etc... Here is a list of 224-EDO degrees that need re-defining:

E\ (deg 72) should read E natural
B\ (deg 203) should read B natural

F↓⎳ (deg 78) should read E‡ || T24 symbology: E|
C↓ \ (deg 210) should read B‡ || T24 symbology: B|

Db◖ (deg 16) should read Db or C#
Gb◖ (deg 109) should read Gb or F#
Ab◖ (deg 147) should read Ab or G#

E(\ (deg 64) should read Dᵻ/Eƀ || T24 symbology: D#| Eb-
G(\ (deg 119) should read Fᵻ/Gƀ || T24 symbology: F#| Gb-
B(\ (deg 195) should read Aᵻ/Bƀ || T24 symbology: A#| Bb-

D↓◖ (deg 27) should read Cᵻ/Dƀ
A⎳\ (deg 160) should read Gᵻ/Aƀ

D◖◖ (deg 36) should read Cᵻᵻ/Dd || T24 symbology: C## Dd
G◖ (deg 130) should read Fᵻᵻ/Gd || T24 symbology: F## Gd
A◖◖◖ (deg 166) should read Gᵻᵻ/Ad || T24 symbology: G## Ad

E( (deg 68) should read Dᵻᵻ/Ed || T24 symbology: D## Ed
B⎳◖ (deg 201) should read Aᵻᵻ/Bd || T24 symbology: A## Bd

Thank you in advance!

Cordially,
Dr. Oz.

--------------------------------------------

24-tone maqam music tuning with 12-tones tempered in the style of Rameau's modified meantone and 17 tones produced by cycle of super-pyth fifths
|
0: 1/1 0.000
1: 84.360 cents 84.360
2: 145.112 cents 145.112
3: 192.180 cents 192.180
4: 9/8 203.910 perfect 2nd
5: 292.180 cents 292.180
6: 128/105 342.905
7: 364.735 cents 364.735
8: 5/4 386.314 major 3rd
9: 415.677 cents 415.677
10: 4/3 498.045 perfect 4th
11: 584.359 cents 584.359
12: 635.300 cents 635.300
13: 696.090 cents 696.090
14: 3/2 701.955 perfect 5th
15: 788.270 cents 788.270
16: 854.924 cents 854.924
17: 888.270 cents 888.270
18: 27/16 905.865
19: 16/9 996.090 Pythagorean minor 7th
20: 64/35 1044.860
21: 1074.547 cents 1074.547
22: 15/8 1088.269 classic major 7th
23: 1125.488 cents 1125.488
24: 2/1 1200.000 1 octave

Farey rationalized:

21/20
87/80
19/17
9/8
103/87
128/105
100/81
5/4
89/70
4/3
185/132
140/97
148/99
3/2
41/26
136/83
147/88
27/16
16/9
64/35
173/93
15/8
182/95
2/1

1: 1: -0.107 cents -0.107193 0.0170 Hertz, 1.0205 cycles/min.
2: 2: -0.106 cents -0.106481 0.0175 Hertz, 1.0499 cycles/min.
3: 3: -0.378 cents -0.377606 0.0638 Hertz, 3.8262 cycles/min.
4: 4: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
5: 5: -0.088 cents -0.088437 0.0158 Hertz, 0.9493 cycles/min.
6: 6: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
7: 7: -0.072 cents -0.072424 0.0135 Hertz, 0.8107 cycles/min.
8: 8: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
9: 9: -0.063 cents -0.063496 0.0122 Hertz, 0.7320 cycles/min.
10: 10: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
11: 11: -0.026 cents -0.025809 0.0055 Hertz, 0.3280 cycles/min.
12: 12: 0.056 cents 0.055790 0.0122 Hertz, 0.7301 cycles/min.
13: 13: -0.026 cents -0.026094 0.0059 Hertz, 0.3537 cycles/min.
14: 14: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
15: 15: -0.265 cents -0.264743 0.0631 Hertz, 3.7851 cycles/min.
16: 16: 0.016 cents 0.015908 0.0039 Hertz, 0.2364 cycles/min.
17: 17: -0.019 cents -0.018871 0.0048 Hertz, 0.2858 cycles/min.
18: 18: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
19: 19: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
20: 20: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
21: 21: -0.016 cents -0.016299 0.0046 Hertz, 0.2749 cycles/min.
22: 22: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
23: 23: -0.039 cents -0.038838 0.0112 Hertz, 0.6746 cycles/min.
24: 24: 1/1 0.000000 0.0000 Hertz, 0.0000 cycles/min.
Mode: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total absolute difference : 1.2780 cents
Average absolute difference: 0.0532 cents
Root mean square difference: 0.1040 cents
Highest absolute difference: 0.3776 cents
Number of notes different: 14

Cycle of 12 tones with cent values:

696.09000
696.09000
696.09000
698.04372
701.95500
696.09000
700.00128
703.91000
703.91000
703.91000
701.95500
701.95500

Cycle of 17 tones with cent values:

701.95500
701.95500
701.95500
709.81171
709.81171
709.81171
709.81171
709.81171
709.81171
709.81171
709.81171
700.28100
703.91000
703.91000
703.91000
701.95500
701.95500

INTERVAL Perde Notation

1/1 RAST C
84.360 Nim Zengule C#/Db
145.112 Zengule Cᵻ/Dƀ
192.180 Dik Zengule Dd
9/8 DUGAH D
292.180 Kurdi D#/Eb
128/105 Dik Kurdi Dᵻ/Eƀ
364.735 Nerm Segah Ed
5/4 SEGAH E
415.677 Buselik E‡
4/3 CHARGAH F
584.359 Nim Hijaz F#/Gb
635.300 Hijaz/Saba Fᵻ/Gƀ
696.090 Dik Hijaz/Saba Gd
3/2 NEVA G
788.270 Nim Hisar G#/Ab
854.924 Hisar Gᵻ/Aƀ
888.270 Dik Hisar Ad
27/16 HUSEYNI A 440hz
16/9 Ajem A#/Bb
64/35 Dik Ajem Aᵻ/Bƀ
1074.547 Nerm Evdj Bd
15/8 EVDJ B
1125.488 Mahur B‡
2/1 GERDANIYE C

11-limit exponents monzo notation:

6, -12, -2, -2, 7
-3, 1, 1, 0, 0
-3, -14, 1, 6, 2
26, -15, 0, -2, 1
2, -1, 0, 0, 0
-3, 2, 0, 0, 0
13, -8, 1, -2, 1
10, -6, 1, -2, 1
0, 0, 0, 0, 0
20, -11, -1, 0, 0
-4, 3, 0, 0, 0
-8, -2, 7, -3, 1
7, -1, -1, -1, 0
2, -9, 7, 0, -1
7, 4, -6, -2, 2
-1, 9, -8, 2, 0
14, 4, -10, 0, 1
6, 0, -1, -1, 0
-30, 15, 3, 0, 0
-2, 0, 1, 0, 0
4, -2, 0, 0, 0
-20, 10, 0, 4, -2
-1, 1, 0, 0, 0
-12, 8, -2, 4, -2

✩ ✩ ✩
www.ozanyarman.com

[Non-text portions of this message have been removed]